
Ulam Quarterly | Volume 1, Number 1, 1992Products of Symbol AlgebrasThat Ramify Only on aNonsingular Plane Elliptic CurveTimothy J. FordDepartment of MathematicsFlorida Atlantic UniversityBoca Raton, FL 33431e-mail address: ford@acc.fau.eduAbstractThe elements of the Brauer group of the complement of a plane ellipticcurve are presented as products of symbol algebras over the �eld of rationalfunctions on the plane. AcknowledgementsThe author was supported in part by the National Science Foundationunder grant DMS-8822944. The author also wishes to thank ProfessorsDavid Saltman and John Tate for their help and encouragement on thisproject.Let k be an algebraically closed �eld of characteristic zero and C � P2a nonsingular plane elliptic curve, de�ned by the cubic polynomial F 2k[x; y; z]. In this note we study central division algebras D over K =k(x=z; y=z) which ramify only on C. Algebras representing the Brauerclasses of such D have recently been constructed using methods of QuantumGroups. Work along these lines has been done by M. Artin, J. Tate, M.Van den Bergh, W. Schelter, A. B. Odeskii and B. L. Feigin (see [1], [2],[3], [4], [8], [9]). It follows from their work, for example, that for any suchcentral division algebra D over K the index of D = p(D : K) is equal tothe exponent of D in the Brauer group B(K). David Saltman immediatelyposed some related questions to the author. First, if D has index n, doesthere exist a cyclic extension K(�1=n) which splits D? That is, is D a cyclicalgebra of degree n? Secondly, is D split by the speci�c cyclic extensionL = K(F (x=z; y=z; 1)1=n)? To the second question the answer is yes for12



Products of Symbol Algebras that Ramify Only on aNonsingular Plane Elliptic Curve 13n � 4, since in that case L is quickly seen to be a rational function �eld.For higher n, the question remains open. In view of these results and openquestions, it seems interesting and worthwhile to have a formula if not forD at least for a representative of the Brauer class of D in terms of cyclicalgebras. The purpose of this note is to give such an explicit formula. As ourtitle suggests, we prefer to write our cyclic algebras as symbol algebras. If�, � are elements of the �eld K and � is a �xed nth root of unity, the symbolalgebra (�; �)n is the free associative K-algebra generated by 2 elements u,v subject to the relations un = �, vn = �, uv = �vu. The symbol algebra(�; �)n is split by K(�1=n), hence is a cyclic algebra.From [5, Theorem 5], for example, it follows that the Brauer group ofthe complement of C B(P2 � C) is isomorphic to the group H1(C;Q=Z)which parametrizes the unrami�ed cyclic Galois extensions of C. Theisomorphism is described in [6] and associates to an algebra class A inB(P2 � C) a cyclic Galois cover L of C. This L is loosely called the rami-�cation of A on C. Fix an isomorphismQ=Z �= �, where � is the sheaf ofall roots of unity. From Kummer theory [7, p. 126], the sequence(1) 0! C�=C�n! H1(C; �n)! nPic C ! 0is exact for all n � 2, where nPic C denotes the elements annihilated byn in Pic C. Since C� = k�, we see that H1(C;Q=Z) is isomorphic to thetorsion subgroup of Pic C. Since C is nonsingular the Picard group Pic Cis isomorphic to the divisor class group Cl(C). Pick an identity element Q0for the group law on C. Since C is an elliptic curve, torsion elements in thePicard group of C correspond up to linear equivalence to Weil divisors ofthe form Q�Q0 where nQ� nQ0 is principal for some n > 0. In this notewe intend to explicitly construct in terms of symbol algebras an algebra Awhose class in B(P2�C) corresponds to Q�Q0 where Q�Q0 is a divisorof order n = ps and p is a prime. Since B(P2 � C) can be identi�ed withthe subgroup of B(K(P2)) consisting of algebra classes which rami�y onlyalong C, we construct the algebra A over the �eld K(P2):Suppose the Weil divisor Q � Q0 has order n in Cl(C) and � is arational function on C such that the divisor of � is (�) = nQ� nQ0. Using[7, p. 125] one sees that the unrami�ed cyclic extension of C correspondingto Q�Q0 is the integral closure of C in K(C)[T ]=(Tn � �):In order to simplify notation, we assume the curve C intersects the lineat in�nity z = 0 in the point Q0, with multiplicity 3, and dehomogenize theprojective plane with respect to z. Let A2 denote the a�ne plane z 6= 0and C0 = C � Q0. From [5, Theorem 5] the rows of the diagramB(P2) ! B(P2 � C) ! H1(C;Q=Z) ! H3(P2;Q=Z)# # # #B(A2) ! B(A2 � C0) ! H1(C0;Q=Z) ! H3(A2;Q=Z) (2)



14 Timothy J. Fordare exact. Since B(P2) = B(A2) = 0 and H3(P2;Q=Z) = H3(A2;Q=Z) =0, the four remaining groups in (2) are isomorphic. From now on we write Cfor the a�ne curve C0 and proceed as follows. Let Q be a point on C of ordern = ps. We �nd a function � 2 k(x; y) of the form � = te11 � � � temm whereei 2 Z, each ti is a linear polynomial in k[x; y] and such that � restrictsto a function on C whose divisor is (�) = nQ. Using the description ofsymbol algebras in [6, Section 2], the rami�cation of the symbol algebraA1 = (f; �)n on C is the cyclic extension corresponding to the point Q.By [6, Theorem 2.1] if Y is the curve t1 � � � tm = 0, there is an algebraA2 in B(A2 � Y ) such that A1A2 represents the desired algebra class inB(A2 � C). Using [5, Theorem 4] A2 is Brauer equivalent to a product ofthe form Q(ti; tj)rijn . With this introduction we state our �rst result.Theorem 1. Let C be a nonsingular a�ne plane elliptic curve de�nedby f = 0. Assume the projective completion of C is nonsingular and Chas only 1 point at in�nity. Given any point Q on C of order n = ps forsome prime p, there are lines de�ned by equations t1 = 0; : : : ; tm = 0 andintegers pu, feigmi=1 , frijg1�i<j�m such that the product of symbol algebrasover k(x; y) A = (f; te11 � � � temm )pu �Yi<j(ti; tj)rijpurami�es only on C with rami�cation corresponding to the point Q.Proof. By the above discussion, it su�ces to �nd lines t1; : : : ; tm andintegers e1; : : : ; em satisfying the property that if � = te11 � � � temm , then thedivisor of � on C is (�) = nQ. We consider 3 cases.Case 1. n = 3. In this case, Q is a ex on C. Let t = 0 be the tangent lineto C at Q. Then the divisor of � = t is (�) = 3Q, so the function � doesthe job. In this case A = (f; �)3 is an algebra with rami�cation Q:Case 2. n = 2s. Consider the s points Q; (�2)Q; (�2)2Q; : : : ; (�2)s�1Q.Let ti = 0 be the tangent line to C at (�2)iQ, i = 0; : : : ; s � 1. Then fori = 0; : : : ; s� 2, ti intersects C at the point (�2)iQ with multiplicity 2 andat the point (�2)i+1Q with multiplicity 1. The divisor of � = te00 � � � tes�1s�1on C is w0Q + w1(�2)Q + w2(�2)2Q + : : : + ws�1(�2)s�1Q where theintegers w0; : : : ; ws�1 are given by the matrix product24 w0...ws�135 = 264 2 01 2 01 2 : : : 00 1 237524 e0...es�135 = 24 2e0...es�2 + 2es�135If we take e0 = (�2)s�1, e1 = (�2)s�2, : : : , es�2 = �2, es�1 = 1, then(w0; : : : ; ws�1) = (�(�2)s; 0; : : : ; 0). Therefore, the divisor of � is (�) =�nQ and either � or 1=� is the desired function.Case 3. n = ps where p 6= 2 and n > 3. Say -2 has order m (mod ps).That is, m is the smallest positive integer such that 1 � (�2)m is divisible



Products of Symbol Algebras that Ramify Only on aNonsingular Plane Elliptic Curve 15by ps. I don't know whether it is possible for there to exist r > s such thatpr divides 1� (�2)m, but if so, choose r to be the largest positive integersuch that pr divides 1� (�2)m. Since the group law on the elliptic curve Cis divisible, there exists a point P of order pr and pr�sP � Q. Therefore, itsu�ces to prove the theorem for the point P . Consider the points P , (�2)P ,: : : , (�2)m�1P . Because p 6= 2, none of these points is a ex. Let ti = 0 bethe tangent line to C at (�2)iP , i = 0; : : : ;m� 1. The tangent line ti = 0intersects C at (�2)iP with intersection multiplicity 2 and at (�2)i+1P withintersection multiplicity 1. The divisor of the function � = te00 � � � tem�1m�1 onC is w0P+w1(�2)P+w2(�2)2P+: : : +wm�1(�2)m�1P where the integersw0; : : : ; wm�1 are given by the matrix product24 w0...wm�135 = 264 2 0 11 2 01 2 : : : 00 1 237524 e0...em�1 35 = 264 em�1 + 2e0...em�2 + 2em�1 375If we let e0 = (�2)m�1, e1 = (�2)m�2, : : : , em�2 = �2, em�1 = 1, then(w0; : : : ; wm�1) = (1 � (�2)m; 0; : : : ; 0). So the divisor of � is (�) =(1� (�2)m)P = prvP where we factor 1� (�2)m = prv and v is relativelyprime to p. There is a function  2 k[x; y] such that the divisor of restricted to C is vP �P1, where P1 is a point of order pr on C. Therefore,the divisor of �=pr is (�) � pr() = prP1. So the unrami�ed extension ofC obtained by adjoining a pr � th root of � corresponds to the point P1in the group law on C. Since P and P1 generate the same group on C, itsu�ces to prove the theorem for P1, and � is the desired function. Q.E.D.Our second result uses the techniques of [6, Section 2] to determine theintegers rij of Theorem 1 explicitly in terms of the exponents ei:Theorem 2. (1) Let p be an odd prime and P a point on C of order pr > 3where �2 has order m mod(pr) and pr is the largest power of p dividing1� (�2)m. Let � = te00 � � � tem�1m�1 be as in Case 3 of the proof of Theorem 1.Then the Brauer class of the algebra in B(P2 � C) corresponding to thepoint P is represented byA = �f; te00 � � � tem�1m�1 �pr (tm�1; tm�2)�em�2pr � � � (ti; ti�1)�ei�1pr� � � (t1; t0)�e0pr (t0; tm�1)�em�1pr(2) Let Q be a point of order 2s on C and � = te00 � � � tes�1s�1 as inCase 2 of the proof of Theorem 1. Then the Brauer class of the algebra inB(P2 �C) corresponding to the point Q is represented byA = �f; te00 � � � tes�1s�1 �2s (ts�1; ts�2)�es�22s � � � (ti; ti�1)�ei�12s � � � (t1; t0)�e02s



16 Timothy J. FordProof. (1) We use the notation and terminology of [6, Section 2]. In Case3 of the proof of Theorem 1, the graph corresponding to the symbol algebra(f; ti)ein is f� 2ei�! �(�2)iPx??ei ??y�2ei(�2)i+1P�  ��ei �tiNow C intersects the divisor of � only at the points P , (�2)P , : : : ,(�2)m�1P . Therefore, the algebra class Qi<j (ti; tj)rijpu of Theorem 1 cor-responds to the weighted cyclic graph(�2)iP � ei�1�! �ti�1x??2ei &ti� ...x??ei .(�2)i+1P �  �2ei+1 �ti+1Since �2ei = ei�1, this cycle corresponds to the product of symbol algebras(tm�1; tm�2)�em�2n � � � (ti; ti�1)�ei�1n � � � (t0; tm�1)�em�1n . The proof of (2)is similar. Q.E.D. References[1] M. Artin and W. Schelter, Graded algebras of global dimension 3,Advances in Math. 66 (1987), pp. 171{216.[2] M. Artin, J. Tate, and M. Van den Bergh, Modules over regular alge-bras of dimension 3, preprint.[3] M. Aartin, Some algebras associated to automorphisms of ellipticcurves, in The Grothendieck Festschrift, vol. 1, 1990, Birkh�auser,Boston, pp. 33{85.[4] M. Artin and M. Van den Bergh, Twisted homogeneous coordinaterings, J. Algebra, 133 (1990), pp. 249{271.[5] T. J. Ford, On the Brauer group of k[x1; :::; xn; 1=f ], J. Algebra, 122(1989), pp. 410{424.[6] T. J. Ford, On the Brauer group of a localization, J. Algebra, (toappear).[7] J. Milne, Etale Cohomology, Princeton University Press, Princeton,N.J., 1980.



Products of Symbol Algebras that Ramify Only on aNonsingular Plane Elliptic Curve 17[8] A. B. Odeskii and B. L. Feigin, Sklyanin algebras associated to ellipticcurves, preprint.[9] M. Van den Bergh, Regular algebras of dimension 3, in S�eminaireDubreil-Malliavin 1986, vol. 1296 of Lecture Notes in Math., 1987,Springer-Verlag, Berlin, pp. 228{234.
This electronic publication and its contents are ccopyright1992 by Ulam Quarterly. Permission is hereby granted togive away the journal and its contents, but no one may \own"it. Any and all �nancial interest is hereby assigned to theacknowledged authors of individual texts. This noti�cationmust accompany all distribution of Ulam Quarterly.


