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Abstract

The elements of the Brauer group of the complement of a plane elliptic
curve are presented as products of symbol algebras over the field of rational
functions on the plane.
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Let k be an algebraically closed field of characteristic zero and C' C P?
a nonsingular plane elliptic curve, defined by the cubic polynomial F' &€
k[z,y,z]. In this note we study central division algebras D over K =
k(z/z,y/z) which ramify only on C. Algebras representing the Brauer
classes of such D have recently been constructed using methods of Quantum
Groups. Work along these lines has been done by M. Artin, J. Tate, M.
Van den Bergh, W. Schelter, A. B. Odeskii and B. L. Feigin (see [1], [2],
[3], [4], [8], [9]). Tt follows from their work, for example, that for any such
central division algebra D over K the index of D = /(D : K) is equal to
the exponent of D in the Brauer group B(K). David Saltman immediately
posed some related questions to the author. First, if D has index n, does
there exist a cyclic extension K(al/”) which splits D? That is,1s DD a cyclic
algebra of degree n? Secondly, is D split by the specific cyclic extension
L = K(F(x/z,y/z,1)"/™)? To the second question the answer is yes for
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n < 4, since in that case L is quickly seen to be a rational function field.
For higher n, the question remains open. In view of these results and open
questions, it seems interesting and worthwhile to have a formula if not for
D at least for a representative of the Brauer class of D in terms of cyclic
algebras. The purpose of this note is to give such an explicit formula. As our
title suggests, we prefer to write our cyclic algebras as symbol algebras. If
«, § are elements of the field K and  is a fixed n'”* root of unity, the symbol
algebra (a, 3),, is the free associative K-algebra generated by 2 elements u,
v subject to the relations u” = «, v” = 3, uv = (vu. The symbol algebra
(v, B)p is split by K (a'/™), hence is a cyclic algebra.

From [5, Theorem 5], for example, it follows that the Brauer group of
the complement of C' B(P? — (') is isomorphic to the group H(C, Q/Z)
which parametrizes the unramified cyclic Galois extensions of . The
isomorphism is described in [6] and associates to an algebra class A in
B(P? — () a cyclic Galois cover L of C'. This L is loosely called the rami-
fication of A on C'. Fix an isomorphism Q/Z = u, where p is the sheaf of
all roots of unity. From Kummer theory [7, p. 126], the sequence

(1) 0— C*/C*" — HY(C, ptn) = nPicC =0

is exact for all n > 2, where , Pic C' denotes the elements annihilated by
n in Pic C. Since C* = k*, we see that H*(C,Q/Z) is isomorphic to the
torsion subgroup of Pie C'. Since C'is nonsingular the Picard group Pie C'
is isomorphic to the divisor class group CI(C'). Pick an identity element Qg
for the group law on C'. Since C'is an elliptic curve, torsion elements in the
Picard group of C correspond up to linear equivalence to Weil divisors of
the form @@ — Qo where n@Q — n@)q is principal for some n > 0. In this note
we intend to explicitly construct in terms of symbol algebras an algebra A
whose class in B(P? — C') corresponds to @ — Qg where @ — (g is a divisor
of order n = p* and p is a prime. Since B(P? — () can be identified with
the subgroup of B(K(P?)) consisting of algebra classes which ramifiy only
along C', we construct the algebra A over the field K (P?).

Suppose the Weil divisor @ — Qg has order n in CI(C) and « is a
rational function on C such that the divisor of « is (o) = n@Q — nQq. Using
[7, p. 125] one sees that the unramified cyclic extension of C' corresponding
to @@ — Qo is the integral closure of C'in K(C)[T]/(T™ — «a).

In order to simplify notation, we assume the curve C' intersects the line
at infinity z = 0 in the point @, with multiplicity 3, and dehomogenize the
projective plane with respect to z. Let A? denote the affine plane z # 0
and C' = C'— Qq. From [5, Theorem 5] the rows of the diagram

B(P?) — B(P:-C) — HYC,Q/Z) — H3(P2,Q/Z)

! | | | (2)
B(Az) — B(Az—C’) — Hl(C’,Q/Z) — H3(A2,Q/Z)
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are exact. Since B(P?) = B(A?) =0 and H3(P? Q/Z) = H3*(A? Q/Z) =
0, the four remaining groups in (2) are isomorphic. From now on we write '
for the affine curve C and proceed as follows. Let ) be a point on C' of order
n = p*. We find a function o € k(z,y) of the form o = ¢{* ---t&™ where
e; € Z, each 1; is a linear polynomial in k[, y] and such that « restricts
to a function on C' whose divisor is (@) = n@). Using the description of
symbol algebras in [6, Section 2], the ramification of the symbol algebra
Ay = (f,a)n on C' is the cyclic extension corresponding to the point Q.
By [6, Theorem 2.1] if Y is the curve ¢y ---4,, = 0, there is an algebra
As In B(A2 — V) such that A; As represents the desired algebra class in
B(A? — (). Using [5, Theorem 4] A5 is Brauer equivalent to a product of
the form [] (%, tj):{j. With this introduction we state our first result.

Theorem 1. Let C' be a nonsingular affine plane elliptic curve defined
by f = 0. Assume the projective completion of C' is nonsingular and C
has only 1 point at infinity. Given any pownt @ on C' of order n = p® for
some prime p, there are lines defined by equations t1 = 0,... t,, = 0 and
integers p*, {e;}7, , {rij }i<i<j<m such that the product of symbol algebras
over k(xz,y)
Tiq
A= (fa7 'tfnm)pu ’ H(ti’tj)p”]
i<j

ramifies only on C' with ramification corresponding to the point Q).

Proof. By the above discussion, it suffices to find lines t1,... ,%, and
integers eq,... , e, satisfying the property that if o« = ¢]* - -tS, then the
divisor of & on C'is (o) = n). We consider 3 cases.

Case 1. n = 3. In this case, () is a flex on C'. Let ¢ = 0 be the tangent line
to C' at ). Then the divisor of o = ¢ is (&) = 3@Q, so the function « does
the job. In this case A = (f, )3 is an algebra with ramification .

Case 2. n = 2°. Consider the s points @, (—=2)Q, (=2)?Q, ... ,(=2)*"1Q.
Let t; = 0 be the tangent line to C' at (—2)'Q, i =0,... ,5 — 1. Then for
i=0,...,s—2,t; intersects C' at the point (—2)!@) with multiplicity 2 and
at the point (—2)*+1Q with multiplicity 1. The divisor of o = ¢5° - -°7'
on C'is wo@ + w1 (—2)Q + w2(—2)?Q + ... + ws—1(—2)*"1Q where the

integers wy, . .., ws_1 are given by the matrix product
Wo 2 0 € 260
|1 2 0 _
: - 1 2 ... 0 o :
Ws—1 0 1 2 €s—1 €s—2 4+ 2e5_4
If we take eq = (=2)*71 e; = (=2)*72, ... | €59 = —2, e5_1 = 1, then
(wo, ... ,ws—1) = (—(=2)%,0,... ,0). Therefore, the divisor of a is () =

+n@ and either o or 1/« is the desired function.

Case 3. n = p® where p # 2 and n > 3. Say -2 has order m (mod p*).
That is, m is the smallest positive integer such that 1 — (—2)™ is divisible
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by p®. I don’t know whether it is possible for there to exist r» > s such that
p” divides 1 — (=2)™, but if so, choose r to be the largest positive integer
such that p” divides 1 — (—=2)™. Since the group law on the elliptic curve C'
18 divisible, there exists a point P of order p” and p"~* P ~ (). Therefore, it
suffices to prove the theorem for the point P. Consider the points P, (—2) P,
.., (=2)m=LP. Because p # 2, none of these points is a flex. Let ¢; = 0 be
the tangent line to C' at (—=2)*P,i=0,... ,m — 1. The tangent line t; = 0
intersects C' at (—2)! P with intersection multiplicity 2 and at (—2)*+! P with
intersection multiplicity 1. The divisor of the function o = #5°---¢.™=! on
Cis woP+wi (=2)P+wa(—=2)2P+... +wm_1(—2)"~1 P where the integers

wg, ... ,Wny—1 are given by the matrix product
wo 2 01 €0 €m—1 + 2€0
|1 2 0 _
- 1 2 ... 0 o :
Wi —1 0 1 2 €m—1 em—2 + 2em_1
If we let eg = (=2)™71 61 = (=2)™72, ..., em—2 = =2, €1 = 1, then
(wo, ... ywm-1) = (1 = (=2)™,0,... ,0). So the divisor of a is (a) =

(1= (=2)™)P = p"vP where we factor 1 — (=2)™ = p"v and v is relatively
prime to p. There is a function ¥ € k[z,y] such that the divisor of ~
restricted to C'is vP — Py, where P is a point of order p” on C. Therefore,
the divisor of a/4?" is (a) — p"(y) = p" Pi. So the unramified extension of
C' obtained by adjoining a p” — th root of a corresponds to the point Py
in the group law on C'. Since P and P; generate the same group on C', it
suffices to prove the theorem for P;, and « 1s the desired function. Q.E.D.

Our second result uses the techniques of [6, Section 2] to determine the
integers 7;; of Theorem 1 explicitly in terms of the exponents e;.

Theorem 2. (1) Let p be an odd prime and P a point on C of order p” > 3
where —2 has order m mod(p”) and p" is the largest power of p dividing
L—(=2)™. Leta =t5°---t.77 be as in Case 3 of the proof of Theorem 1.
Then the Brauer class of the algebra in B(P? — C) corresponding to the
point P s represented by

A= (f 15 ~t;m_‘1l)pr (b1, tm2) ™% e (b 1) 5

= '(tlato);reu (thtm—l);rem_l

(2) Let Q be a point of order 2° on C and o = t5°---1°7' as in
Case 2 of the proof of Theorem 1. Then the Brauer class of the algebra in

B(P? — () corresponding to the point Q is represented by

A

(Ft5 10 ) g (Fmas tsma) 5577 e (i i) 557 (F1,10) 5
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Proof. (1) We use the notation and terminology of [6, Section 2]. In Case
3 of the proof of Theorem 1, the graph corresponding to the symbol algebra

(fa ti)zl is

f. ﬁ .(_2)1P
Tez l—Ze,
(_2)1+1P. — .t,

—e;

Now C' intersects the divisor of « only at the points P, (=2)P, ...,
(=2)m=1 P. Therefore, the algebra class HK]» (ti,tj);f of Theorem 1 cor-
responds to the weighted cyclic graph

(2P ST gticy

t,fel /
*

(—2)i+1p ®tita

2€ei41

Since —2e; = e;_1, this cycle corresponds to the product of symbol algebras
(et tmen),, 77 oo (tiytiz), 7 o (fo,tm—1),, """ The proof of (2)

n n

18 similar. Q.E.D.
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