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§1 Preliminaries and Notation

Let S be a prescheme, € be a locally free Module of finite type over S,
and € be its dual. We denote by P = P(€) the projective fibration defined
by € and by P the projective fibration defined by &. P will be called the
scheme of hyperplanes of P. This terminology can be justified as follows.
Let & be a section of P over S which is therefore determined by an invertible
quotient module £ of €. From it we obtain an invertible quotient module
Lpof&p = (Ep), on the other hand, we have the invertible quotient module
0,(1) of £,. Passing to the duals we may take L;l (resp. Op(—1)) to be
invertible submodules (locally direct factors) of Ep (resp. of (Ep) ) and the
pairing £p ® &p — Op defines therefore a natural pairing

Op(—1) @ Lpt — Op (%)
or also a transposed homomorphism
Op — Op(1) @ Lp =Lp(1) (#*)
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i.e. a section of Lp(1) canonically defined by £. The “divisor” of that
section, 1.e. the closed subscheme H¢ of P defined by the Ideal, image of
(%), is called the hyperplane in P defined by the element & € P(S). We could
also describe it by noting that locally over S| £ is given by a section ¢ of £
such that ¢(s) # 0 for all s (¢ is determined by & up to multiplication by an
invertible section of Og); since € = p. (0, (1)), (p: P — S is the projection),
¢ can be considered as a section of Op(1), the divisor of which is nothing
else but H,.

Of course, if we consider £~! as an invertible submodule of & locally
a direct factor in & then the correspondence between & (i.e. L or L71 C €)
and ¢ is obtained by taking for ¢ a section of £~! which does not vanish at
any point, i.e. by a trivialization of £~ (which exists locally anyway). Let
us note that H is simply P(&/L£~!) (canonical isomorphism), which is a
third way to describe Hy (N.B. P(£/L71) is indeed canonically embedded
in P = P(&) which has the advantage of proving in addition that H is a
projective fibration over S and is & fortiori smooth over S. (Again it would
have been better to say in sect. 17 of EGA IV that a projective fibration is
smooth...). Tt would be best to begin this way.

Remarks. The construction of H¢ in terms of £ is compatible with base
change, as one can see right away, in other words one finds a homomorphism
of functors (8ch)’/s — (Ens), P — Div(P/S) where the second term
denotes the functor of “relative divisors” of P/S whose values at S’ (an
arbitrary S prescheme) is the set of closed subschemes of Ps: which are
complete transversal intersections and of codimension 1 relatively to S’ (cf.
sect. 19) [of EGA 1V, Intepreter].!

It is easy to show that this functor homomorphism is a monomor-
phism, in other words that £ is determined by H¢. (This last fact justifies
the terminology “scheme of hyperplanes” used above.) We shall see that
the functor Div(P/S) is representable by the prescheme (direct) sum of
P(Symm* (é)) so that P can be identified to an open and closed subscheme
of Div(P/S)...% (N.B. Let’s remark that, the determination of the relative
divisors of P/S could be done with the means available right now, using
results of Ch. IIT and could be added as an example to sec. 19 ...) [of EGA
IV, Interp.].

Let us now make the base change S’ = P — S and let us consider the
diagonal section (or “generic section”) of Psi = P(Eg/) over S': we find a
closed subscheme H of Pg: = PXSP, called sometimes the incidence scheme
between P and P defined by the Ideal image of the canonical homomorphism

Op(=1) @5 Op(=1) — Opy.p;

from what we know already, it is a projective fibration over P, and by
symmetry it is also a projective fibration over P. We recover, of course, the

1Uses notation of new edition of EGA IV [Interp.]
2Compare with Mumford’s: ‘Lectures on curves on an algebraic surface.’ [Interp.]
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“special” hyperplanes H, (for ¢ a section of P over S) by starting out from
the “universal hyperplane” H and by taking its inverse image for the base
change S &P

The same remark holds for every point & of P with values in any S-
prescheme S” which (considered as a section of Ps: over S) allows us to
define an H¢ C Psr; the latter is nothing else but the inverse image of H by

the base change S’ £ p.

In what follows we assume a prescheme X of finite type over S and
an S morphism f: X — P. One of the main objectives of this section is to
study for every hyperplane He of P, where £ € P(S5), its inverse image

Ye=f""(He) =X xp He

and especially to relate the properties of X and Y. As usual we consider
P(S’), S’ an arbitrary S scheme (in this case H¢ is a hyperplane in Ps:)
and we put again

Ye :fg,l(Hg) = Xgv X P, He =X xp He,

where the subscript S’ denotes as usual the effect of the base change S — S
and where in the last expression we consider H¢ as a P-prescheme via the
composite morphism H; — Ps: — P. It is therefore again convenient to
consider the case where ¢ is “universal” i.e. where S = P and ¢ is the
diagonal section so that H; = H, in this case one observes (up to better
notations to be suggested by Dieudonné) that ¥ = Y. In the general case
of a¢: 5" — P, one has therefore also Yy =Y x5’ Finally if F is a sheaf of
modules® over X we denote by G its inverse image over Yz by § its inverse
image over H so that we also have G¢ = §® ¢,0g'.

Let us summarize in a small diagram the essentials of the constructions
and notations considered.

F S Ge
X ¢+——— XxgP Y Ye
l l Lo
P +—— PxgP H H

by

S — P — 5

(The squares and diamonds appearing in this diagram are Cartesian).
In the next section we will study systematically the following case: S’
is the spectrum of a field A and its image in P is generic in the corresponding

3Ask A.G. If module always means coherent or quasi-coherent sheaf of modules.
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fiber P;. After making the base change Spec k(s) — S we are reduced to
the case where S is the spectrum of a field k, what we are going to assume
in the next section. Also most of the properties studied for X and Y are
of “geometric nature” and therefore invariant under base field change, this
allows us also (without loss of generality) to restrict ourselves to the case
where K is algebraically closed or to the case where K = k(7n), n being
the generic point of P and &: Spec(K) — P is obviously the canonical
morphism. We also note that for geometric questions concerning X, Y; we
can (after making a base change on k) restrict ourselves to the case of k
algebraically closed.

A terminological note: If f is an immersion we usually call Y a
hyperplane section of X (relatively to the projective immersion f and to
the hyperplane He [Interp.]). There is no reason why not to extend this
terminology to the case of an arbitrary f.

§2 Study of the generic hyperplane section: local properties

Let us recall that now S = Spec(k), where k is a field. If 5 is a point
of P and if ¢: Spec k(n) — P is the canonical morphism we are also going
to write H,, Yy, G, instead of H¢, Y, Ge.

In this section 7 will always denote the generic point of P.

Proposition 2.1. Let us assume that X s irreducible. Then Y, s irre-
ducible or empty and in the first case it dominates X ; anyway Y 1is irre-

ducible.

Indeed, since H — P is a projective fibration as it is for ¥ — X
which implies that Y is irreducible if X is irreducible. So the generic fiber
Y, [Interp.] of ¥ over P is irreducible or empty and in the first case its
generic point is the generic point of Y which therefore lies over the generic
point of X. q.e.d.

Proposition 2.2. Let Z be a subset of P. Then ils inverse image Z, in
Hy 1s empty of and only if every point of Z 1s closed. In particular if 7 s
constructible then 7, = ¢ if and only of 7 1s finite.

We may suppose that Z is reduced to a single point z and we only
have to prove that the image of H, in P consists exactly of the non-closed
points of P. Let X be the closure of z, using 2.1 we only have to prove
that Z, = ¢ if and only if X is finite (X being a closed subscheme of P).
Replacing X by Xj(;) < Pr(y) the ‘only if” [French ‘il faut’” or necessary]
part results from the following fact for which we have to have a reference and
which fact deserves to be restated here as a lemma: if Y 1s any hyperplane
section of X and if ¥;) = ¢ then X is finite (indeed X C P — H is affine
and projective. .. ). The ‘sufficient’ part is obvious, for example, by noticing
that Y is a projective fibration of relative dimension (n—1) over X (n being
the relative dimension of P and P over S), thus X being finite over k, V'
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is of absolute dimension n — 1, (n = dim P) thus the morphism ¥ — P
cannot be dominant thus its generic fiber Y, is empty.

Corollary 2.3. Let f: X — P be a morphism of finite type and let Z be a
constructible subset of X. In order for its inverse image in Y, to be empty
it is necessary and sufficient for the image f(Z) to be finite. In particular,
in order for Y, to be empty it is necessary and sufficient for f(X) to be
finite.

Corollary 2.4. Let 7,7 be two closed subsets of X with Z irreducible,
and let Z, and Z{7 be their inverse images in Yy,. In order to have 7, C Z{7
it 1s necessary and sufficient for f(Z) to be finite or to have Z C Z'. In
order that Z, = Z, it is necessary and sufficient for f(Z) and f(Z') to be
finite or to have Z = 7.

This 1s an 1mmediate consequence of 2.3 as we see that
f(Z —Z N Z") can only be finite if Z C 7' or if f(7) is finite (if we do
not have z C 7' then z — Z N 7' is dense in 7, thus f(Z — Z N Z') is dense
in f(7), and if the former is finite and thus closed—Dbeing constructible—so
is also the latter.

Corollary 2.5. To every irreducible component X; of X such that dim
F(X5) > 0 we assign its inverse image Vi, in'Y,. Then'Y;, is an irreducible
component of Y, and we obtain this way a one-to-one correspondence be-

tween the set of irreducible components X; of X such that dim f(X;) > 0
and the set of irreducible components of Yy,.

Indeed, it follows from 2.3 that Y}, is the union of all Y}, defined above,
that are closed and non-empty subsets of Y'; they are also irreducible because
of 2.1. Finally, they are mutually not included in each other because of 2.4,
hence the conclusion.

Let us notice that if dim X; = d; we have dimY; = d; — 1. More
generally:

Proposition 2.6. Let us assume that for every irreductble component X;
of X we have dim f(X;) > 0, i.e. Yi, # 0, or that f is an immersion and
dim f(X) > 0. Then we have dim Y, = dim X — 1.

We are reduced to the case where X is irreducible, since 2.5. By the
very construction, Y, is defined from Xy, as the divisor of a section of
an invertible module over Xy, (i.e. the inverse image of Op(1)). On the
other hand, Xy, is irreducible (since X is irreducible and since k() is a
pure transcendental extension of & —fact that should have been mentioned
at the beginning of the section ...) ( precision not given by A.G. ) and
Yy, # Xy since the image of Y, in X (not like X} (), which is faithfully
flat over X)) is not equal to X, indeed it does not contain the closed points
of X because of 2.3. It follows that dim Y, = dim X)) — 1 =dim X -1
(reference needed for the last equality.) q.e.d.
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Proposition 2.7. Let F be a quasi coherent module over X, hence G, over
Y, . Let Z; be the associated prime cycles of F such that dim f(Z;) > 0. Let
Zin be the inverse timage of Z; in'Y,, then the 7y, are exactly all the prime

cycles associated with G,. Also, their inclusion relations are the same as
those of Z;.

The last assertion is contained in 2.4. On the other hand, since
Y — X is a projective fibration, thus flat with fibers (S1) and irreducible,
it follows from sect. 3 of EGA TV that the associated prime cycles with the
inverse image G of F over Y are the inverse images of the associated prime
cycles of J. Hence they are induced on the generic fiber Y; of ¥ over P,
and the associated prime cycles to G, are the non-empty inverse images of
the Z; which proves 2.7 by means of 2.3.

Actually we did not need Y but we could have used directly the fact
that ¥;, — X is flat with fibers (S1) (and also geometrically regular, i.e. the
morphism is regular) and with irreducible fibers (and even geometrically
irreducible: they are localizations of projective schemes); same remark for
the proof of 2.1.

Proposition 2.8. Let F be coherent over X, let y € Y, and x be its image
in X. Let P(M) be one of the following properties for a finitely generated
module M over a noetherian local ring A:

(i) coprof M < n (ref)
(ii) M satisfies (Sk) (ref)
(iii) M is Cohen-Macaulay
(iv) M is reduced (ref)
(v) M is integral (ref)

Then for G, , to satisfy the property P, it is necessary and sufficient
that F, also satisfies it.

This follows immediately from results of section 6% taking into account
that Y;, = Y is a regular morphism so that Ox , — Oy, , should be regular.
Taking into account 2.3, we obtain thus:

Corollary 2.9. With the notations for 2.8, let 7 be the set of © € X such
that P(Fy) is false. Then in order for G, to satisfy the condition P at all
its points, it is necessary and sufficient for f(Z) to be a finite subset of P,
or to have dim f(Z) = 0.

Indeed, 2.8 tells us that A='(7) is the P-singular subset of G, and that
it is empty if and only if f(7) is finite by 2.3 (N.B. h denotes the morphism
Y, = X; I have just realized that the letter P in 2.8 has been used in two
different ways).

Corollary 2.10. Lety €Y, in order that Y, be reqular, respectively satisfy
the property Ry, (reference) at y, respectively be normal at y, it is necessary

4Interp.: clear up this reference. Is it EGA IV 7
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and sufficient that X satisfy the same property at x. Let 7 be the set of
those points of X where X is not reqular, resp. &g (resp. normal); forY, to
be regular, resp. to satisfy Ry, resp. normal, it is necessary and sufficient

that f(7) be finite, i.e. dim f(Z) = 0.

Same proof as for 2.8 and 2.9. We must give the different references
ensuring that Z be closed (as we must know that it is constructible to apply
2.3).

Let us point out that in 2.10 we do not talk at all about the correspond-
ing geometric properties; the results described are of ‘absolute’ nature. We
now examine the properties of geometric nature. (We could possibly take
the opportunity to change the section.)

§3 Generic hyperplane section: geometric irreducibility and
connectedness

Theorem 3.1 (Bertini-Zariski). Assume X geometrically irreducible and
dim f(X) > 2. Then the generic hyperplane section Y, has the same prop-
erty.

Let K/k be the function field of X and let n = dim P; introducing
the affine coordinates T, ..., 7T, in P (by choosing a hyperplane at infinity
H® such that f(X) is not contained in it) and Sy, ..., S, the affine coordi-
nates in P, we see that the function field L of Y, can be identified with the
field of fractions of the integral domain K[Sy,...,S,]/(XS; — 1) where
the t; € K are the images of T; under f: X — P. Since dim f(z) > 0,
the ¢; are not all algebraic over k, a fortiori they are not all zero; for
example, take ¢, # 0. Then, we realize immediately that we have L =
K(S1,...,5n-1) (pure transcendental extension), S, € L given by the
equation X¢;5; — 1 = 0 as a function of the S; (I < ¢ < n—1) and
the t; (I < ¢ < n). On the other hand, ¥ = k(n) can be identified with
k(Si,...,Sy) and the canonical inclusion k' — L is obtained by sending S5;
to S;
i.e. k' being a subextension of L, is the subextension generated by the
S; (1 €4 < n) or what is evidently the same by the S; (1 < i< n—1)
and by S, =ag+a151 + -+ an_15,_1, where ag = t;l, a; = —titrjl for
1<i<n—1.

We notice that the field generated by the a; and by the ¢; is obvi-
ously the same, their common transcendence degree is nothing else but the
dimension of f(X).

(N.B. It would be appropriate to include this birational description at
least as a corollary to 2.1). The proof of 3.1 is thus reduced to that of

Lemma 3.1.1 (Zariski). (See interpreter’s note at the end of section [In-
terp.]) Let k be a field, K an extension of finite type over k, m an integer
> 0, a; (0 < i< m) the elements of K such that the transcendence degree of
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k(ag,...,am) over kis > 2. Let L = K(S1,...,Sm) and k' be the subfield

K =k(S1,...,5m, ao+ Y. a;S;) of L (the S; being indeterminates). If K
1

is a primary extension of k then L is a primary extension of k'

This lemma, or lemmata that look like a brother, wander all over the
literature. That is why I leave it up to you the choice of the place from
where you will copy a proof, i.e. I do not feel inspired to find a proof with
my own means.

Corollary 3.2. Assume f ts unramified or the characteristic of k s zero,
and dim f(X) > 2. Then if X is geometrically integral, the same is true
about Y;.

Indeed, geometrically integral = geometrically irreducible + separa-

ble.

Corollary 3.3. Assume that k is algebraically closed and that for every
irreducible component X; of X we have dim f(X;) > 2. Moreover suppose
that X is G-connected, where & is the set of closed subsets Z of X such
that dim f(Z) = 0 (i.e. for every such Z, X — 7 is connected). Under such
conditions, Y, is geometrically connected over k(n).

Indeed, by a lemma that ought to appear in sect. 6% with Hartshorne’s
theorem, the hypothesis means that we can join any two irreducible com-
ponents X’ and X" of X by a chain of irreducible components X, =
X' ..., X, = X" such that two consecutive ones have an intersection not
in & then the inverse images X, and X' are joined by a chain of X;;, which
are geometrically connected over k(1) by 3.1 and the intersection of two
consecutive ones is not empty by 2.3.

It follows (since Y;, = X, is the union of the X;,, X; running through
the set of irreducible components of X)) that Y}, is geometrically connected
over k(n). q.e.d.

Interpreters’s note to 3.1.1: This should be compared with Zariski’s
collected papers (MIT Press) vol. 1, page 174, vol. 2, page 304. Also
Zariski-Samuel vol. 1, page 196, vol. 2, page 230 of the GTM Springer
edition. Also Jouanolou: Théoréme de Bertini et applications, Th. 3.6 and
Section 6.
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5primary extension probably means that the smaller field is algebraically closed
in the larger one (or quasi algebraically closed) [Interp.]. Jouanolou Thm. 3.6 [Interp.]
6Ask A.G.



Please mail papers to be considered for publication
in Ulam Quarterly to:

Professor Piotr Blass,
Editor-in-Chief

Ulam Quarterly

P. O. Box 24708

W. Palm Beach, FL. 33416-4708



