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Abstract

The Schur-Weyl Duality Theorem motivates the general definition of
dual representations. Such representations arise in a very large class of
groups, including all compact, nilpotent and semidirect product groups, as
well as the complementary groups in the physics literature and the reductive
dual pairs in the mathematics literature. Several applications of the notion of
duality are given, including the determination of polynomials and operator
invariants, and the discovery of unusual dual algebras.

Introduction

In 1901 I. Schur proved a theorem [Sc] that was later expanded by Weyl
in a form [We] that is now called the Schur-Weyl Duality Theorem. This
theorem, which is briefly reviewed in the next section, relates the represen-
tation theory of two groups, the general linear group and the symmetric or
permutation group. It is the first theorem, as far as we know, that clas-
sifies, up to isomorphism, all irreducible representations of one group in
terms of all irreducible rational representations of the other. As we shall
show such a phenomenon in which representations of pairs of groups are
related turns out to be quite general. It includes the complementary pairs
of groups introduced in the physics literature by Moshinsky and Quesne
[MQ] and the reductive dual pairs introduced in the mathematics literature
by many mathematicians [Ge, GK, KV, Sa, ...], and especially Howe [Ho].
All compact groups can be written as dual representations and it seems
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likely that all nilpotent and semidirect product groups can be viewed as
dual representations although this remains to be proven.

There are many applications of the theory of dual representations.
First, knowing that the representations of two groups are dual to one an-
other allows one to get the algebras generated by the group actions, from
which information can be obtained about the commutants. One rather sur-
prising connection of such dual algebras is with the theory of polynomial
invariants.

Second, given two groups (G and G/ whose representations are dual, the
restriction of the representation of GG to a subgroup H may give rise to an
extension of the representation of G’ to a group H' containing G’. Such a
“see-saw” phenomenon (this term was introduced by Kudla) wherein H' is
dual to H gives considerable insight on the nature of the restriction of G to
H or H to G'. As will be shown, it is possible to view the decomposition
of tensor products in this context and use the dual pair structure to resolve
the multiplicity problem.

Finally, giving a representation of a group along with its spectral de-
composition can lead to unusual representations of a dual group, or even to
a dual algebra whose structure might not be known or conveniently charac-
terized. In the next section we will give a general definition of dual repre-
sentations and provide a number of examples to illustrate the generality of
the definition. The third section will then give a number of applications of
the notion of duality.

§2. Definitions and Examples of Dual Representations

To motivate the definition of dual representations we will formulate

the Schur-Weyl Duality Theorem in a somewhat unfamiliar way, so that
(1,...1)

it can easily be generalized. Let P » (C"*¥) denote the space of all
polynomial functions 7 on C**" which satisfy the covariant condition

di1 0
F(dZ) = det(d)F(Z) , ¥V d= , Z e,
0 dnn
Let S, denote the symmetric group of degree n and GL(N,C) denote the
complex general linear group of order N. A joint action of S, x GL(N,C)
on P11 ig defined by
[L(0) @ R(9)]F(Z) = F(o™" Zg)

VFEePL N Yoel, YVgeGLN,C), andV Z € C**N
Then the Schur-Weyl Duality Theorem can be stated as follows:
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3) Let Z € C"*N and du(Z) = (1/7™N) exp(—tr(Z2"))dZ and set
H =F(CN)

={f:CN 5 C: f entire and / IF(2)|)? du(Z) < oo}

QXN

Let G = GL(N,C) and G’ = GL(n,C) and define

(L) WZ) = fg' ™" 2)
[R(9)11(2) = [(Z9)

Then F(C*N) = 3", &1, and the representation L @ R|s, is irreducible,
where A denotes both a representation of G and GG’ in the class of irreducible
representation of GG (and G') labeled by an r-tuple of integers (¢1,...,4)
satisfying ¢4 > €y > - > {, > 0, r = min(n, N).

4) Generalization of Example No. 3. Let H be the same as in Ex. 3. Let
G = GL(N,C) x ---x GL(N,C). Let p1,...,pm be integers such that

m copies

p1+p2+ -+ pm =n, and let

G'=GL(p1,C) x - x GL(pm, C)

m

Partition Z € C**¥ in block form as

7 =

Lm

1
] with Z; € PN 1 <i<m;

then G acts on C** via

Z191
Z-(g1,--9m) = : Y g;i € GL(N,C)
ZmGm
and G’ acts on C** via
A
(kla'~~akm)'Z: , k’ZEGL(pZ)
kot Zm,

These actions induce a representation of G’ x GG on H defined by

(L& R) (k1. km), (91, gm)]f(Z)
=flk1,... s km) -7 - (g1,...,9m)] Y feEH.
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Theorem 2.4. The representation L @ R of G’ x G on H is decomposed
into irreducible subrepresentations labeled by the double signature (pg, pre)
where pg: s an irreducible representation of G’ indexed by an n-tuple of
integers of the form

A (m)

M. 2 Ml(m)a , M )

(1)
(M7, MID My
with Ml(i) > Mz(i) > - > Mzgf) > 0,1 <1< mand ug 1s a tensor
product of irreducible representations of G wndexed by the same n-tuple
of integers. Moreover, each irreducible subspace of this orthogonal direct
sum decomposition of H is an isotypic component of both pg and pgr.

See [KT1] and [KT3].

Example 4 is a typical example of “dual (or complementary) pairs”
as defined by M. Moshinksy [MQ] and generalized by R. Howe [Ho]. An
example of the “see-saw” phenomenon arises if the subgroup H of G is
chosen to be SO(N); the dual to H is H' = Sp(2m,R) acting on H as
in Example 3 with n = 2m. Note that the irreducible representations of
Sp(2m,R) are infinite-dimensional metaplectic representations. (See [KV],

[GK] and [MQ)]).

§3. Applications of Dual Representations

1) The invariant theory of block diagonal subgroups of GL(n,C). Let G' =
GL(p1,C) x -+ x GL(pm, C) and H be the same as in Example 4 of Section
2. Let n = p1+- - -+ pm and consider the algebra S(C"*™) of all polynomial
functions on C**™. Then the adjoint representation of G'L(n,C) gives rise
to the coadjoint representation of G L(n, C) on S(C"*"). The polynomials of
S(C™*") that are fixed by the restriction of this coadjoint representation to
the block diagonal subgroup G’ of GL(n, C) form a subalgebra of S(C**")
called the subalgebra of GG '-invariants. Using the work of Procesi [Pr] on the
dual G of G’ and a Frobenius reciprocity theorem relating the dual action

of G and G’ on H gives the following.

Theorem 3.1. (See [KT4]} If a matriz X € C**™ is partitioned in block
form as
X1 o Xim
x=| z
X1 - Xowm

where each X;; 15 a p; X p; matrie, 1 < 4,7 < m, then the subalgebra of
all G'-invariant polynomials is finitely generated by the constants and the
functions of the form

Trace(X;, i, Xiyiy - Xigiy)



Duality in Representation Theory 49

foralliz=1,... m; k=1, ...,q.

2) The resolution of the multiplicity in the decomposition of tensor products
of group representations. Example 4 and Theorem 2.4 are typical of the
way the “see-saw” phenomenon is used. In this example, if we consider
the restriction of the representation R of G = GL(N,C) x --- x GL(N,C)

m
to the diagonal subgroup H = {(g,...,9) : ¢ € GL(N,C)}, then we have
the problem of decomposing an m-fold tensor product MM @ ... @ M)
of irreducible representations of GL(N,C), where each MW 1<i<m,
is the signature of an irreducible representation of GL(N,C). In general,
the spectral decomposition of this tensor product involves multiplicity. To
resolve this multiplicity H-invariant differential operators (or generalized
Casimir operators) are introduced and their eigenvalues are used to label
different copies of the same irreducible representation of H occurring in this
decomposition. These H-invariant differential operators are related to the
polynomial invariants in Application 1 (see [KT1] and [KT2]).

This leads to the following general setup. Let GG be any reductive Lie
group with the holomorphic representation (on the Fock space F(C"*V) of
Example 3) defined by [R(g)f1(Z) = f(Z - g), and consider a holomorphic
irreducible representation x of G on a subspace V& of F(C*N) . If there is
a dual action of G’ on a subspace V'%, such that the isotypic component
is V'%, ® V& (in general, the action of G’ is much larger than just the left
action unless G/ = GL(n,C) and often one only knows the Lie algebra ac-
tion of ') then the action of G may be used to resolve the problem of the
restriction of the representation y of (G to a subgroup in the following sense.
Consider a subgroup H of G with an irreducible representation px on W};.
Since H is contained in G, its dual H’ contains G’ and has a representa-
tion of W% such that the isotypic component of the dual representation in
F(C*N)is W', @W . We then have the generalized Frobenius reciprocity
theorem:

The multiplicity dim Hom(V'Y.,, W'%,) of the irreducible representation
V'%, in the restriction of Wi, to G’ is equal to the multiplicity dim Hom
(Vi Vi) of the irreducible representation p of H in the restriction of W
to H. If dim(V}, Vi) > 1, then generalized Casimir operators defined in
the same way as above can be used to “break” this multiplicity.

3) Construction of bases for irreducible representation spaces. Dual repre-
sentation theory can also be used to find bases for simple G-modules. We
started with the simple example of Gelfand-Zetlin bases for GL(n,C) by
considering the problem of decomposing tensor products of representations
of GL(N,C) in Example 4 of Section 2. In Theorem 2.4 if the tensor prod-
ucts g of irreducible representations of G = GL(N,C) x --- x GL(N,C)

m

consist only of signatures of the form M®) = (M} 0,...,0) for all i =
~———

N
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1,...,m, then using a formula of Weyl the spectral decomposition of the
tensor product of this particular M () with a general signature is multiplicity
free. Thus if we consider the coupling scheme

(...((M(l) ® M(2)) ® M(S)) . .M(m))

then in the dual representation G’ = G L(n,C) we have a corresponding
chain of subgroup representations GL(1,C) C GL(2,C) C --- C GL(n,C)
which is precisely the Gelfand-Zetlin chain. In [KT1] this construction is
carried out completely to find Gelfand-Zetlin bases for irreducible repre-
sentation spaces of G'L(n,C). If different coupling schemes are used, then
one can construct different types of bases. A similar construction for the
Gelfand-Zetlin bases for the chain SO(2) C SO(3) C --- C SO(N) can be
carried out as follows. It is known that successive restrictions of an irre-
ducible representation of the chain of subgroups SO(N) O SO(N — 1) D
-++ D S0(2) is decomposed into multiplicity-free subrepresentations, but
the difficulty is that odd and even orthogonal groups have a very different
structure. So it is natural to consider the chain SO(N) D SO(N —2) D
SO(N —4) D -+ set G = SO(N), H = SO(N — 2) and let V™) be
an irreducible G-module and W;Im) be an irreducible H-module. It is easy

to compute the multiplicity of W;Im) in the restriction VF(IM) of G to H.
Now the dual G’-module is the metaplectic representation of Sp(2n,R), so
we need to calculate the dual H’-module whose raising operators will send
W;Im) into the intersection of the isotypic component ™) with the isotypic
component of 1™ Again there is multiplicity which can be resolved with
generalized SO(N — 1) Casimir operators. A similar construction also can
be carried out for the compact symplectic groups; further the methods used
to decompose tensor products of the GL(N,C) groups can also be applied
to the orthogonal and symplectic groups.

4) Construction of new representations and algebras via duality. Using the
notion of dual representation can lead to representations of various groups
or algebras which are generally difficult to classify. The procedure can be
described as follows. Let K be a compact group and let p be a finite-
dimensional representation of degree N of K on a complex vector space V.
The many-particle symmetric Fock space L(V) is defined as

L(V)zg@(‘/@m@@‘/)sym

n

where (V @ -+ ® V) sym is the n-fold symmetrized tensor product of V. If
N—— —

n
{é1,...,én} is an orthonormal basis for V, then é;, ® --- ® &;, |sym 15 an
orthogonal basis of the n-particle subspace of L(V). The correspondence
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between L(V) and the space F(C1*Y) given in Example 4 of Section 2 is
given by
€, - ® éin|sym — Ly, . Ly,

so that an action of K on F(C**¥) is given by R(k)f(Z) = f(ZD(k)), YV f €
F(CY*N) where D(k) is the matrix of p(k) relative to the orthogonal basis
{é1,...,én}. The algebra A of operators on F(C*¥) which commute
with D(k), k € K, is in general an infinite-dimensional algebra which has a
Cartan-Weyl structure, with diagonal, raising and lowering operators. This
algebra is dual to the algebra generated by the operators D(k), k € K and
its representations are indexed by the representations of K appearing in the
symmetric tensor products. The explicit construction of several algebras
AE is given in [K1] and [K2].

§4. Conclusion

In this article we have given a number of examples and applications
of the notion of dual representations. We have however only scratched
the surface of what we think is a very rich structure encompassing a very
large class of group representations and related subjects. This makes us
appreciate even more the simple idea initiated by Schur and Weyl.
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