
Ulam Quarterly | Volume 1, Number 1, 1992Duality in Representation TheoryW. H. KlinkDepartment of Physics and AstronomyDepartment of MathematicsThe University of IowaIowa City, Iowa 52242Tuong Ton-ThatDepartment of MathematicsThe University of IowaIowa City, Iowa 52242AbstractThe Schur-Weyl Duality Theorem motivates the general de�nition ofdual representations. Such representations arise in a very large class ofgroups, including all compact, nilpotent and semidirect product groups, aswell as the complementary groups in the physics literature and the reductivedual pairs in the mathematics literature. Several applications of the notion ofduality are given, including the determination of polynomials and operatorinvariants, and the discovery of unusual dual algebras.IntroductionIn 1901 I. Schur proved a theorem [Sc] that was later expanded by Weylin a form [We] that is now called the Schur-Weyl Duality Theorem. Thistheorem, which is brie
y reviewed in the next section, relates the represen-tation theory of two groups, the general linear group and the symmetric orpermutation group. It is the �rst theorem, as far as we know, that clas-si�es, up to isomorphism, all irreducible representations of one group interms of all irreducible rational representations of the other. As we shallshow such a phenomenon in which representations of pairs of groups arerelated turns out to be quite general. It includes the complementary pairsof groups introduced in the physics literature by Moshinsky and Quesne[MQ] and the reductive dual pairs introduced in the mathematics literatureby many mathematicians [Ge, GK, KV, Sa, : : : ], and especially Howe [Ho].All compact groups can be written as dual representations and it seems44



Duality in Representation Theory 45likely that all nilpotent and semidirect product groups can be viewed asdual representations although this remains to be proven.There are many applications of the theory of dual representations.First, knowing that the representations of two groups are dual to one an-other allows one to get the algebras generated by the group actions, fromwhich information can be obtained about the commutants. One rather sur-prising connection of such dual algebras is with the theory of polynomialinvariants.Second, given two groups G and G 0 whose representations are dual, therestriction of the representation of G to a subgroup H may give rise to anextension of the representation of G 0 to a group H 0 containing G 0. Such a\see-saw" phenomenon (this term was introduced by Kudla) wherein H0 isdual to H gives considerable insight on the nature of the restriction of G toH or H0 to G 0. As will be shown, it is possible to view the decompositionof tensor products in this context and use the dual pair structure to resolvethe multiplicity problem.Finally, giving a representation of a group along with its spectral de-composition can lead to unusual representations of a dual group, or even toa dual algebra whose structure might not be known or conveniently charac-terized. In the next section we will give a general de�nition of dual repre-sentations and provide a number of examples to illustrate the generality ofthe de�nition. The third section will then give a number of applications ofthe notion of duality.x2. De�nitions and Examples of Dual RepresentationsTo motivate the de�nition of dual representations we will formulatethe Schur-Weyl Duality Theorem in a somewhat unfamiliar way, so thatit can easily be generalized. Let P (1;::: ;1)| {z }n (Cn�N ) denote the space of allpolynomial functions F on Cn�N which satisfy the covariant conditionF (dZ) = det(d)F (Z) ; 8 d = 24 d11 0.. .0 dnn35 ; Z 2 Cn�N :Let Sn denote the symmetric group of degree n and GL(N; C ) denote thecomplex general linear group of order N . A joint action of Sn �GL(N; C )on P (1;::: ;1) is de�ned by[L(�)
 R(g)]F (Z) = F (��1Zg)8 F 2 P (1;::: ;1); 8 � 2 Sn; 8 g 2 GL(N; C ); and 8 Z 2 Cn�NThen the Schur-Weyl Duality Theorem can be stated as follows:



Duality in Representation Theory 473) Let Z 2 Cn�N and d�(Z) = (1��nN ) exp(�tr(ZZt))dZ and setH = F(Cn�N )= ff : Cn�N �! C : f entire and ZCn�N jf(Z)j2 d�(Z) <1gLet G = GL(N; C ) and G 0 = GL(n; C ) and de�ne[L(g0)f ](Z) = f(g0�1Z)[R(g)f ](Z) = f(Zg)Then F(Cn�N ) = P��I� and the representation L 
 RjI� is irreducible,where � denotes both a representation of G and G 0 in the class of irreduciblerepresentation of G (and G 0) labeled by an r-tuple of integers (`1; : : : ; `r)satisfying `1 � `2 � � � � � `r � 0, r = min(n;N ).4) Generalization of Example No. 3. Let H be the same as in Ex. 3. LetG = GL(N; C ) � � � � � GL(N; C )| {z }m copies . Let p1; : : : ; pm be integers such thatp1 + p2 + � � �+ pm = n, and letG 0 = GL(p1; C ) � � � � �GL(pm; C )| {z }mPartition Z 2 Cn�N in block form asZ = " Z1...Zm # with Zi 2 C pi�N 1 � i � m;then G acts on Cn�N viaZ � (g1; : : : ; gm) = 264 Z1g1...Zmgm 375 8 gi 2 GL(N; C )and G0 acts on Cn�N via(k1; : : : ; km) � Z = 264 k�11 Z1...k�1m Zm 375 ; ki 2 GL(pi):These actions induce a representation of G 0 � G on H de�ned by[(L
 R)((k1; : : : ; km); (g1; : : : ; gm)]f(Z)= f [(k1; : : : ; km) �Z � (g1; : : : ; gm)] 8 f 2 H:



48 W. H. Klink and Tuong Ton-ThatTheorem 2.4. The representation L 
 R of G 0 � G on H is decomposedinto irreducible subrepresentations labeled by the double signature (�G; �G0)where �G0 is an irreducible representation of G 0 indexed by an n-tuple ofintegers of the form�M (1)1 ; : : : ;M (1)p1 ;M (2)1 ; : : : ;M (m)1 ; : : : ;M (m)pm �with M (i)1 � M (i)2 � � � � � M (i)pi � 0, 1 � i � m and �G is a tensorproduct of irreducible representations of G indexed by the same n-tupleof integers. Moreover, each irreducible subspace of this orthogonal directsum decomposition of H is an isotypic component of both �G and �G0 .See [KT1] and [KT3].Example 4 is a typical example of \dual (or complementary) pairs"as de�ned by M. Moshinksy [MQ] and generalized by R. Howe [Ho]. Anexample of the \see-saw" phenomenon arises if the subgroup H of G ischosen to be SO(N ); the dual to H is H0 = Sp(2m;R) acting on H asin Example 3 with n = 2m. Note that the irreducible representations ofSp(2m;R) are in�nite-dimensional metaplectic representations. (See [KV],[GK] and [MQ]).x3. Applications of Dual Representations1) The invariant theory of block diagonal subgroups of GL(n; C ). Let G 0 =GL(p1; C )� � � � �GL(pm; C ) and H be the same as in Example 4 of Section2. Let n = p1+ � � �+pm and consider the algebra S(C n�n) of all polynomialfunctions on Cn�n . Then the adjoint representation of GL(n; C ) gives riseto the coadjoint representation ofGL(n; C ) on S(C n�n). The polynomials ofS(C n�n) that are �xed by the restriction of this coadjoint representation tothe block diagonal subgroup G 0 of GL(n; C ) form a subalgebra of S(C n�n)called the subalgebra of G 0-invariants. Using the work of Procesi [Pr] on thedual G of G 0 and a Frobenius reciprocity theorem relating the dual actionof G and G 0 on H gives the following.Theorem 3.1. (See [KT4]) If a matrix X 2 Cn�n is partitioned in blockform as X = 24 X11 � � � X1m... ...Xm1 � � � Xmm 35where each Xij is a pi � pj matrix, 1 � i; j � m, then the subalgebra ofall G 0-invariant polynomials is �nitely generated by the constants and thefunctions of the form Trace(Xi1i2Xi2i3 � � �Xiqi1)



Duality in Representation Theory 49for all ik = 1; : : : ;m; k = 1; : : : ; q.2) The resolution of the multiplicity in the decomposition of tensor productsof group representations. Example 4 and Theorem 2.4 are typical of theway the \see-saw" phenomenon is used. In this example, if we considerthe restriction of the representation R of G = GL(N; C ) � � � � �GL(N; C )| {z }mto the diagonal subgroup H = f(g; : : : ; g) : g 2 GL(N; C )g, then we havethe problem of decomposing an m-fold tensor product M (1) 
 � � � 
M (m)of irreducible representations of GL(N; C ), where each M (i), 1 � i � m,is the signature of an irreducible representation of GL(N; C ). In general,the spectral decomposition of this tensor product involves multiplicity. Toresolve this multiplicity H-invariant di�erential operators (or generalizedCasimir operators) are introduced and their eigenvalues are used to labeldi�erent copies of the same irreducible representation of H occurring in thisdecomposition. These H-invariant di�erential operators are related to thepolynomial invariants in Application 1 (see [KT1] and [KT2]).This leads to the following general setup. Let G be any reductive Liegroup with the holomorphic representation (on the Fock space F(Cn�N ) ofExample 3) de�ned by [R(g)f ](Z) = f(Z � g), and consider a holomorphicirreducible representation � of G on a subspace V �G of F(Cn�N ). If there isa dual action of G 0 on a subspace V 0�G0 such that the isotypic componentis V 0�G0 
 V �G (in general, the action of G 0 is much larger than just the leftaction unless G 0 = GL(n; C ) and often one only knows the Lie algebra ac-tion of G 0) then the action of G 0 may be used to resolve the problem of therestriction of the representation � of G to a subgroup in the following sense.Consider a subgroup H of G with an irreducible representation � on W�H .Since H is contained in G, its dual H 0 contains G 0 and has a representa-tion of W 0�H such that the isotypic component of the dual representation inF(Cn�N ) isW 0�H0
W �H . We then have the generalized Frobenius reciprocitytheorem:The multiplicity dimHom(V 0�G0 ;W 0�G0) of the irreducible representationV 0�G0 in the restriction of W 0�H0 to G 0 is equal to the multiplicity dim Hom(V �H ; V �H ) of the irreducible representation � of H in the restriction of W�Gto H. If dim(V �H ; V �H ) > 1, then generalized Casimir operators de�ned inthe same way as above can be used to \break" this multiplicity.3) Construction of bases for irreducible representation spaces. Dual repre-sentation theory can also be used to �nd bases for simple G-modules. Westarted with the simple example of Gelfand-�Zetlin bases for GL(n; C ) byconsidering the problem of decomposing tensor products of representationsof GL(N; C ) in Example 4 of Section 2. In Theorem 2.4 if the tensor prod-ucts � of irreducible representations of G = GL(N; C ) � � � � �GL(N; C )| {z }mconsist only of signatures of the form M (i) = (M i1; 0; : : : ; 0)| {z }N for all i =



50 W. H. Klink and Tuong Ton-That1; : : : ;m, then using a formula of Weyl the spectral decomposition of thetensor product of this particularM (i) with a general signature is multiplicityfree. Thus if we consider the coupling scheme� � � ���M (1) 
M (2)�
M (3)� � � �M (m)�then in the dual representation G 0 = GL(n; C ) we have a correspondingchain of subgroup representations GL(1; C ) � GL(2; C ) � � � � � GL(n; C )which is precisely the Gelfand-�Zetlin chain. In [KT1] this construction iscarried out completely to �nd Gelfand-�Zetlin bases for irreducible repre-sentation spaces of GL(n; C ). If di�erent coupling schemes are used, thenone can construct di�erent types of bases. A similar construction for theGelfand-�Zetlin bases for the chain SO(2) � SO(3) � � � � � SO(N ) can becarried out as follows. It is known that successive restrictions of an irre-ducible representation of the chain of subgroups SO(N ) � SO(N � 1) �� � � � SO(2) is decomposed into multiplicity-free subrepresentations, butthe di�culty is that odd and even orthogonal groups have a very di�erentstructure. So it is natural to consider the chain SO(N ) � SO(N � 2) �SO(N � 4) � � � � ; set G = SO(N ), H = SO(N � 2) and let V (M)G bean irreducible G-module and W (m)H be an irreducible H-module. It is easyto compute the multiplicity of W (m)H in the restriction V (M)H of G to H.Now the dual G 0-module is the metaplectic representation of Sp(2n;R), sowe need to calculate the dual H0-module whose raising operators will sendW (m)H into the intersection of the isotypic component I(M) with the isotypiccomponent of I(m). Again there is multiplicity which can be resolved withgeneralized SO(N � 1) Casimir operators. A similar construction also canbe carried out for the compact symplectic groups; further the methods usedto decompose tensor products of the GL(N; C ) groups can also be appliedto the orthogonal and symplectic groups.4) Construction of new representations and algebras via duality. Using thenotion of dual representation can lead to representations of various groupsor algebras which are generally di�cult to classify. The procedure can bedescribed as follows. Let K be a compact group and let � be a �nite-dimensional representation of degree N of K on a complex vector space V .The many-particle symmetric Fock space L(V ) is de�ned asL(V ) = 1Xn=0� (V 
 � � � 
 V )| {z }n symwhere (V 
 � � � 
 V )| {z }n sym is the n-fold symmetrized tensor product of V . Iffê1; : : : ; êNg is an orthonormal basis for V , then êi1 
 � � � 
 êin jsym is anorthogonal basis of the n-particle subspace of L(V ). The correspondence



Duality in Representation Theory 51between L(V ) and the space F(C 1�N ) given in Example 4 of Section 2 isgiven by êi1 
 � � � 
 êin jsym �! Zi1 : : :Zinso that an action ofK on F(C 1�N ) is given by R(k)f(Z) = f(ZD(k)); 8 f 2F(C 1�N ), where D(k) is the matrix of �(k) relative to the orthogonal basisfê1; : : : ; êNg. The algebra AKV of operators on F(C1�N ) which commutewith D(k); k 2 K, is in general an in�nite-dimensional algebra which has aCartan-Weyl structure, with diagonal, raising and lowering operators. Thisalgebra is dual to the algebra generated by the operators D(k); k 2 K andits representations are indexed by the representations of K appearing in thesymmetric tensor products. The explicit construction of several algebrasAKV is given in [K1] and [K2].x4. ConclusionIn this article we have given a number of examples and applicationsof the notion of dual representations. We have however only scratchedthe surface of what we think is a very rich structure encompassing a verylarge class of group representations and related subjects. This makes usappreciate even more the simple idea initiated by Schur and Weyl.References[Ge] S. Gelbart, Examples of dual reductive pairs, Automorphic Forms,Representations and L-functions, Part I, A. Borel and W. Cassel-mar, eds., Proc. Symp. Pure Math., Vol. 33, Amer. Math. Soc.,Providence, RI, 1979, pp. 287{296.[GK] K. Gross and R. Kunze, Bessel functions and representation theoryII, J. Func. Anal. 25, 1{49 (1977).[Ho] R. Howe, Dual pairs in physics: Harmonic oscillators, photons,electrons, and singletons, in \Applications of Group Theory inPhysics and Mathematical Physics" (M. Flato, P. Sally, and G.Zuckermann, eds.) Lectures in Applied Mathematics, Vol. 21,Amer. Math. Soc., Providence, RI, 1985.[K1] W. H. Klink, Scattering operators on Fock space IV, J. Phys. A:Math. Gen. 21, 4305{4321 (1988).[K2] , Scattering operators on Fock space V, J. Phys. A:Math. Gen. 21, 4323{4330 (1988).[KT1] W. H. Klink and T. Ton-That, On resolving the multiplicity ofarbitrary tensor products of the U (N ) groups, J. Phys. A: Math.Gen. 21, 3877{3892 (1988).[KT2] , n-Fold tensor products of GL(N; C ) and decomposi-tion of Fock spaces, J. Func. Anal., 84, 1{18 (1989).
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