Ulam Quarterly — Volume 1, Number 1, 1992

Tangential Linear Representations of
Automorphism Groups of Free Groups

Andy R. Magid*
University of Oklahoma

Department of Mathematics

Norman, OK 73019

Abstract

The automorphism group of a group acts morphically on its varieties
of representations. The stabilizer of a representation acts on the tangent
space of that representation; this provides a representation of the stablizer.
An interpretation of D.D. Long’s theorem that the Burau and Gassner rep-
resentations of the braid group and pure braid group occur as tangential
representations in the variety of two dimensional representations of a free
group is given. For the full automorphism group of the free group, it is
shown that the most faithful tangential representation factors through the
second commutator quotient group.

Introduction

The set R,T' = Hom(T', GL,C) of n-dimensional complex representa-
tions of the finitely generated group I' forms a complex algebraic variety: if
I' has generators z1, ... , &4, then R,I"is the subset of G L, C(® of d-tuples
of matrices satisfying the relations of I', the correspondence sending the rep-
resentation p to the tuple (p(x1), ..., p(xq)). In fact, this correspondence is
clearly a closed immersion. The automorphism group Aut(T') of T acts on
the representations R, I" as algebraic variety automorphisms, so a subgroup
H of Aut(T') which fixes a representation p will act on the Zariski tangent
space T,(R,I') to R,I' at p. We will call these tangential representations.

Recently, Long [2, Thm. 2.4 and 2.6] has shown that, the Burau and
Gassner representations of the braid group and pure braid group occur as
(parameterized families of) tangential representations. The braid group and
pure braid group on d strands are automorphism groups of the d-generator
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free group Fy. Long finds his representations in the closed analytic subva-
riety of RaFy of representations into SUz(C).

The Burau and Gassner representations are traditionally constructed
by means of the Fox calculus, as explained, for example, by Birman [1,
Examples 3 and 4]. The Fox calculus can be regarded as a method for
calculating with free group cocycles (see, for example [3, p.59]), and it is a
simple matter, recalled for completeness below, to see that the Fox calculus
chain rule [1, Prop. 3.3, p.105] shows that the Fox calculus construction of
representations of subgroups of Aut(Fy) is the same as the representations
of those subgroups obtained on cocycle spaces Z!(Fy, M), where M is a
module invariant under the relevant automorphism subgroup. We will call
these cocycle representations.

As will be shown below, cocycle and tangential representations are
closely allied: the tangent spaces of representation varieties are embedded
in cocycle spaces [3, Prop. 2.2, p.33] and for the free group Fy we have an
equality T,(R,, Fy) = Z'(Fa4, Ad o p). (Here “Ad” is the adjoint representa-
tion of GL,C on M,C by conjugation.) In [3, Thm. 3.8, p.62], we showed
that the differential of a map on representation varieties of free groups in-
duced from a group homomorphism is given, under the above identification,
by the Fox Jacobian matrix of the images of the generators. This result en-
ables one to view the tangential representations as special cases of cocycle
representations.

The purpose of this paper is to carry out the details of this connection.
For this to be useful, one needs a reasonable supply of invariant repre-
sentations. Here it is most convenient to consider closed subvarieties of
invariant representations (this leads to parameterized families of tangential
representations, as in Long’s work) although an algebraic trick with generic
representations allows these to be replaced by a single representation.

These methods suffice to obtain the Burau and Gassner representations
as tangential representations; more precisely as direct factors of tangential
representations. This works because the relevant cocycle representation
embeds in the tangential one. We are then led to consider the possible
representations of large subgroups of Aut(Fy). Unfortunately, it turns out
that for subgroups large enough to contain the inner automorphism group
Inn(Fy) the best that can be hoped for is a representation of the “induced I-
A automorphism group Fy/Fj ” (terminology is from [1, Example 2, p.117]
and means automorphisms of Fig/ F/ induced from Aut(Fy), F is the second
commutator group). We do find a faithful tangential representation here,
however.

We use the basic results of the theory of representation varieties of [3],
and adopt its notation. For Fox calculus and braid groups, our reference is

[1] (see also [4]).

Tangential and Cocycle Representations
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As noted, automorphisms of the free group Fy = (x1,...24) will act
on its representation varieties: if p € R, Fy and o € Aut(Fy), then ap will
be the representation p o a~'. If the representation p is fixed by «, then
a will act, via its derivative D(«),, on the tangent space T,(R,Fy). In [3,
Thm. 3.8, p. 62] it was shown that this derivative could be interpreted as
the “Fox Jacobian” of «, namely the matrix [a~'z;/0z;]. We recall this
interpretation, and its connection with automorphism action on cocycles.

R, Fy can be identified with GL,,C? via p +— (p(z;)). Since for any A €
G L, C the tangent space T4 (GL,C) is M,,C, T,(R,F4) can be identified
with M, C@  which we regard as column d-tuples of matrices. Fy acts on
these d-tuples via Ad o p on each entry. We define the Fox Jacobian of
« € Aut(Fy) as follows:

Definition 1. Let o € Aut(Fy). Then (Ja=!/dr) denotes the d x d
[0a=!(x;)/0x;]; the entries here are Fox derivatives [1, §3.1] and hence
elements of Z[Fy]. We call this matrix the Foz Jacobian of .

Given a representation p of Fy; (and hence Z[F,]) we write (da=1/0x)?
for the action of (Ja~!/dx) on d-tuples from the representation space of p.
In this notation, we recall the statement of [3, Thm. 3.8, p.62].

Jacobian Formula. Let p € R, Fy; be fired by o € Aut(Fy). Then under
the identification T,(R,Fy) — M,C@, D(«a), = (D=1 dz)Ador,

As pointed out in [3, Cor. 3.9, p.62], this identification is compatible
with the identification [3, Prop. 2.2, p.33] of T,(R, F4) and Z'(Fy, Ad o p),
where Z1 is identified with M, C¥ via ¢ — [o(x;)]. As we now note,
cocycles in fixed representations (such as the above Ad o p) admit an auto-
morphism action:

Proposition 2. Let M be a T'-module and H a subgroup of Aut(T'). (T
is any group). Assume that for all x € T, o € H and m € M, we have
em = a(z)m. Let ¢ € ZY (T, M) be a cocycle. Then §(a)(c) = o oa™t is
also a cocycle and § : H — GL(ZY(T', M)) is a group homomorphism.

(We omit the elementary proof). As a corollary, we obtain for the free
group Fy:

Corollary 3. Let ' in Proposition 2 be Fy. Then
s(a)(o)(zi) = Y (9o~ (2i)/Day)o(ay).

Moreover, if we identify Z*(Fg, M) with MY via o — [o(x;)] then §(«)
on M9 becomes multiplication by (da~" /).

Proof. é(a)(o)(z;) = o(a~tz;) which is expanded by the usual Fox for-
mula [1, 3-2, p.105] to give the equation of the corollary. The matrix formula
then follows.

For the free case considered in Corollary 3, we can be a little more
explicit about the range of § : H — GL(Z(Fy4, M)). As stated, we identify
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ZY(Fq, M) and M@ and the image of § preserves this d-tuple structure.
Thus in fact the image of J lies in GLq(End(M)), the d x d matrices over the
endomorphism ring of M. If pys : Fq = GL(M) denotes the representation
associated to M, and if R is a subring of End(M) containing pas(Fyq), then
the image of § is in GL4(R). We will have occasion to use these observations
below, where we refer to them as “restrictions on the image of § associated
to the restrictions on the image of pyr” (to lie in R).

Corollary 3 implies that at a fixed representation, the tangential action
(Jacobian formula) is the same as the cocycle action (Proposition 2). To
use either of these actions to construct representations d of subgroups of
Aut(Fy), we need fixed representations. We will actually be considering
some subvarieties of fixed representations. We consider next the relevant
formalities:

Let V be a closed subset of R, Fy with coordinate ring A = C[V].
Associated to (the inclusion morphism into R,Fy from) V is a generic
representation Py : Fy — GL,(A) defined by p(z) = Py(z)(p) for all
p €V, x € Fyq[3, Prop. 1.19, p.19]. Tt follows from the defining formula
that if every p in V is fixed by the subgroup H of Aut(Fy), then Py is also
fixed by H. Using Proposition 2, this then defines a representation § of H in
GL(ZY(F4,Ado Py)), given by Corollary 3 by the matrix (Ja~!/dz )2,
Forp € V, T,(R, Fq) = Z'(Fy, Adop) = Mn(C)(d), and we can think of this
latter as the evaluation of M, (A)(d) at p. Since the action of Fg on M, (C)
via Ad o p is given by evaluating the action of Fy on M, (A) via Ad o Py at
p, we have that the differential action of H on T,(R,) is the evaluation of
the action via ¢ on Zl(Fd, Ad o Py). We record this observation for later
use.

Proposition4. Let V be a closed subset of R, Fyq and let H be a subgroup
of Aut(Fyq). Assume that H fires every element of V. Then the generic
representation Py of V is also fixzed by H, and the representation § : H —
GL(ZY(Fy4, Ado Py) satisfies §(a)(p) = (Do), for allp e V.

Proposition 4 says that we can consider ¢ as a parameterized family
of tangential representations (with parameter space V). If the H-invariant
subset V' of Proposition 4 is not only closed but also irreducible, its coordi-
nate ring A, being an integral domain of the same cardinality as C, admits
a (non-C-linear) embedding into C, say f: A — C. Then we can consider
the representation p = GL,(f)Py : Fqg = GL,C obtained by applying f
to the coordinates of Py-. This representation is also H-invariant (since Py
is) so we can consider the derivative action of H on T,(R,Fy). As we now
show, this is the same as the J-representation of H on Z!(Fy, Ad o Py).

Proposition 5. Let V' be an irreducible closed subset of R, Fyq and let H
be a subgroup of Aut(Fy). Assume that H fizes every element of V. Let
f: C[V] — C be an embedding and let p = GL,(f)Py. Then, for o« € H,
the map induced by f carries 6(a) to (D(a)),.

Proof. d(a) acts on Z'(Fy,Ad o Py) = M,(A)¥ via (0a~'/dx), by
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Corollary 3 (here A = C[V]). (Da), acts on T,(R,Fy) = Mn(C)(d) by
(0a~1/0z) by the Jacobian formula. The action of Fy; on M, (A) is by
Ad o Py; the action on M, (C) is by Ad o p. For D € M, (A) and © € Fy,
we have (Ad o Py)(z)(D) = Py(z)DPy(2)~! so (Ad o p)(z)(M,(f)(D)) =
My (f)(Ad o Py)(x)(D)). Thus the proposition follows.

Because of Proposition 5, the action of subgroups H of Aut(Fy) from
irreducible subsets is just a special case of derivative actions in tangent
spaces. In fact, since every closed subset is a union of finitely many irre-
ducibles, every action from closed subsets is a finite product of derivative
actions on tangent spaces.

To produce closed subsets of fixed representations, we can use the
method of [1, §3.2]: we consider representations of quotients of Fy on which
the automorphisms we study are trivial.

Proposition 6. Let ¢ : F; — G be a surjective homomorphism. Let
H be a subgroup of Aut(Fy) with oo = ¢ for all « € H. Let V denote
the image of R,G wn R,Fy. Then V is a closed subset of R,F; fired
elementwise by H, the generic representation Py of V factors through ¢
and the §-representation of H on Z1(Fy, Ado Py) factors through the group
homomorphism By, from H to GL4(Z[G]) given by B,(c) = (da='/0x).

Proof. The map p — pp from R,G to R, Fy is a closed immersion [3,
Prop. 1.7, p.8] and its image V is fixed by H. If P denotes the generic
representation of R, it is clear that Py = Py. Thus Ad o Py factors
through ¢ also, so that §(a) = (da~!/dz)24°FV acts by (a~1/dz) through
@, then P, and finally Ad.

The homomorphism 3, of Proposition 6 can also be regarded as a
special case of Corollary 3:

Proposition 7. Let ¢ : F; — G be a surjective homomorphism. Let
H be a subgroup of Aut(Fq) with oo = ¢ for all « € H. Regard Z[G)
as an Fq- module via ¢. Under the identification of Z1(Fy, Z[G]) with
ZIGD, §: H — GL(ZY(F4, Z[G]) becomes B,,.

Proof. For f € Z[G], © € Fg and o € H, we have a(z)f = p(a(z))f =
e(x)f = xf, so Corollary 3 applies; it is clear that multiplication by
(0a='/0zx) on Z[G]D acts via ¢, hence by (Da~'/0x)? = B,(«).

Examples and Applications

The homomorphism 3, of Proposition 6 is also used by Birman [1,
Thm. 3.9, p.116] to explain the construction of some representations of
subgroups of Aut(Fy). Proposition 5 shows that the parameterized family
of tangential representations on the image of R,G factors through (in a
sense) the homomorphism 5,. We examine Birman’s examples from this
point of view.
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Example B. (The Burau representation of the braid group By). [2, p.536]
By is the subgroup of all & € Aut(Fy) satisfying: a permutes and conjugates
the generators z1, ..., x4, and preserves the product 2 ...z4 [1, Thm. 1.9,
p.30]. Let Z = (¢) be an infinite cyclic group and define ¢ : Fy — 7 by
¢(x;) = t. The Burau representation is then 3, : By — GLq(Z[t,t7']) [1,
Example 3, p.118]. As remarked in Proposition 7, g, here is the represen-
tation d : By — GL(Z'(Fy4,Z[Z])). We want to consider this representation
as a tangential one. We work with n = 2. The full image of R2Z in Ry Fy
will be too large for our purposes, and we consider instead the subset V' of
representations where ¢ is represented by a diagonal elementary matrix:

V= {p € RoFulp(x:) = ding(s,1), s € C*, 1< i < d}.

V has coordinate ring C[s,s™!] = A, is closed in RoFy, and is invariant
under By. The generic representation Py is given by Py (z;) =diag(s, 1))
in GL2(A) so that Ad o Py is given as follows on Ma2(A):

(Ado Py)(z;) [i Z] - [s—al Sc?] '

C

This equation shows that, as an Fy-module, Ado Py is isomorphic to a direct
sum of four copies of A, with F; trivial on the diagonal copies of A and acting
via multiplication by s (or s=!) on the off diagonal copies. But A, with Fy
action by multiplication by s, is isomorphic to the group algebra C[Z] with
F4 acting through ¢. We thus have C[Z] as an Fy-module direct summand
of Ad o Py. This makes Z!(Fy, C[Z]) a summand of Z!(F;, Ad o Py). The
representation of By on Z!(F;C[Z]) is given by the Burau matrices B, (o) =
(0a~1/0xz)% by Proposition 7. The representation of By on Z'(Fy, Ad o
Py) is given, by Proposition 4, as a parameterized family of derivative
representations, with parameter s € C*. By Proposition 5, this family
is also realized at a single representation p = GLo(f) Py, where f is any
embedding of A. Thus we conclude that the Burau representation is a direct
summand of the tangential representation of p.

Example G. (The Gassner representation of the pure braid group Py).
[2, p.536] Py is the subgroup of all @ € Aut(Fy) satisfying: o« conjugates
the generators z1, ..., x4 and preserves the product zy ...24 [1, Cor. 1.8.3,
p.25]. Let Zg = (t1,...,tq) be the free abelian group on #1,...,ts and
define ¢ : Fy = Z4 by ¢(z;) = t;. The Gassner representation is then 3, :
Py = GL,(Z[t1,t7%, . .. ,td,tgl]) [1, Example 4, p.119]. This is realized
tangentially as in Example B. First, we note that §, is also d : Py —
GL(Z'(F4,Z[Z4))). Then we consider the subset V of the image of Ry Fy in
R2Fy defined by V = {p € RaFy|p(x;) = diag(s;, 1), s; € C*, 1 < i< d}.
V' 1s closed in RsFy, invariant under Py, and has coordinate ring A =
Clty,t74, ... ,td,tgl]. The generic representation Py is given by Py (z;) =
diag(s;, 1) in GLy(A), so that Ad o Py acts on Ma(A) by



Tangential Linear Representations of Automorphism 59
Groups of Free Groups

a s;b

(Adon)(xi)[i Z[:LAC d].

K3

As before, since A = C[Z,], we have C[Z4] as an Fy-module direct summand
of Ado Py so that Z!(Fy, C[Z4)) is a direct factor of Z1(Fy, Ado p) so that
the Gassner representation is a direct factor of the family of derivative
representations parameterized by V| and hence a direct factor of a single
tangential representation.

Now, we want to consider using fixed representations to represent
“large” subgroups of Aut(Fy); that is, subgroups containing (at least) the
inner automorphisms. We first remark that such representations are neces-
sarily abelian:

Lemma 8. Let p € R, Fy. Then p is fized by all inner automorphism of
Fy iff Kerp contains (Fy, Fy).

Proof. IflIn(y) fixes p, p(y~tay) = p(x) forallz € Fy,s0 p(y~tayz~1t) =

e. If this holds for all y, p vanishes on all commutators. Conversely, if p is
abelian, Inn(Fy) fixes p.

Next, we use a result of Blanchfield [1, Thm. 3.5, p.107] to determine
when a ¢ representation vanishes on an inner automorphism.

Lemma 9. Let M be an Fyg-module, H a subgroup of Aut(Fq) containing
Inn(Fyq), and suppose H fizes the representation p afforded by M. As-
sume that 1 is not an eigenvalue of some p(x;). Then 6 o In : Fq —
GL(ZY(Fy, M)) has kernel (Kerp,Kerp).

Proof. We identify Z'(Fy, M) with M9 so that, by Corollary 2, §(«)
has matrix (Ja~!/0z) for « € H. If a = In(y), then §(a) has matrix
(3(y_1xiy)/3xj)p. Fox derivative calculations give that

Oyt wiy)/0x; =y~ (w — 1)y /dx; + bij]

so that the (¢, j)-entry of d(In(y)) is obtained by applying p to the above
equation. By assumption, for some i p(x;) — 1 is invertible. Then if
d(In(y)) = I, we have p(dy/dz;) = 0 for all j. By Blanchfield’s result
[I, Thm. 3.9, p.10], we conclude that y € (Kerp,Kerp). Conversely, if
y € (Kerp,Kerp), then p(y=!) = 1 and, by [1, Thm. 3.7, p.107] again,
p(0y/0x;) = 0 for all j, so 6(In(y)) = 1.

Lemma 9 allows us to determine the kernel of § in these same circum-
stances.

Proposition 10. Let M, H and p be as in Lemma 9. Then 6 : H —
GL(ZY(Fy, M)) has the same kernel as the canonical map

H — Aut(Fy/(Kerp, Kerp)).

Proof. Ifd(a) = I then the formula aln(z)a™! =In(a(z)) implies that (§o
I)(e(x)) = (6 0 I,) (), so that a(z) = x (modulo (Kerp)’ = (Kerp,Kerp)).
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Conversely, if a=!(x;) = z;y; where y; € (Kerp)' for i = 1,...,d, then
(Oa=(x;)/0x;) = 6i; + (0(yi)/Ox;) so that, applying p, we find using [1,
Thm. 3.5., p.107] that d(«) = I.

Because of Lemmas 8 and 9, the best we can hope for in a tangential
representation of a subgroup of Aut(Fy) which contains Inn(Fy) is a kernel
containing Inn(F}/), where Fj = (Fq, Fq) and F} = (F}, F}). As we now
show, we can achieve this by the methods of Example G.

Example LI.A. Let Z; = (t1,...,1q) be the free abelian group on
ty---tg, as in Example G. Let s1,...,s4 in C be independent transcen-
dentals so that Z; — C* by ¢; — s; is an injection. Define p € RoFy

by
plxi) = [56 ﬂ ~

As in Example G, (Ad o p)(#;) on M2C preserves the subspace

0 b

o o)
and acts on it by multiplication by s;. The resulting homomorphism F; —
GGL,C factors through the above injection 74 — C* so Ker(Ad o p) =
(F4,Fq) = F). By Lemma 8, p is fixed by Inn(Fy). Of course, we also
have Kerp = F). Thus o € Aut(Fy) fixes p if and only if a(z) = 2 (mod
Fl) for all #, so that o is the identity modulo Fj. Tt follows that the
subgroup K = {a € Aut(Fy)|o = 1 mod F}} is the stabilizer of p. By
Proposition 10, the representation § : K — GL(T,R2Fy) has the same
kernel as K —Aut(Fy/F}); we denote this kernel by H. The group K is
called the group of I — A automorphisms [1, Example 2, p.117] and K/H
is the group of automorphisms of Fy/F) induced by I — A automorphisms
of Fy [1, Example 2, p.117]. Our results now imply that:

The group of induced I — A (1.1 A) automorphisms of F4/F) has a faithful
linear representations in GL(Z1(Fy, Ado p)) = GL4gC.
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