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54 Andy R. Magidfree group Fd. Long �nds his representations in the closed analytic subva-riety of R2Fd of representations into SU2(C).The Burau and Gassner representations are traditionally constructedby means of the Fox calculus, as explained, for example, by Birman [1,Examples 3 and 4]. The Fox calculus can be regarded as a method forcalculating with free group cocycles (see, for example [3, p.59]), and it is asimple matter, recalled for completeness below, to see that the Fox calculuschain rule [1, Prop. 3.3, p.105] shows that the Fox calculus construction ofrepresentations of subgroups of Aut(Fd) is the same as the representationsof those subgroups obtained on cocycle spaces Z1(Fd;M ), where M is amodule invariant under the relevant automorphism subgroup. We will callthese cocycle representations.As will be shown below, cocycle and tangential representations areclosely allied: the tangent spaces of representation varieties are embeddedin cocycle spaces [3, Prop. 2.2, p.33] and for the free group Fd we have anequality T�(RnFd) = Z1(Fd;Ad � �). (Here \Ad" is the adjoint representa-tion of GLnC on MnC by conjugation.) In [3, Thm. 3.8, p.62], we showedthat the di�erential of a map on representation varieties of free groups in-duced from a group homomorphism is given, under the above identi�cation,by the Fox Jacobian matrix of the images of the generators. This result en-ables one to view the tangential representations as special cases of cocyclerepresentations.The purpose of this paper is to carry out the details of this connection.For this to be useful, one needs a reasonable supply of invariant repre-sentations. Here it is most convenient to consider closed subvarieties ofinvariant representations (this leads to parameterized families of tangentialrepresentations, as in Long's work) although an algebraic trick with genericrepresentations allows these to be replaced by a single representation.These methods su�ce to obtain the Burau and Gassner representationsas tangential representations; more precisely as direct factors of tangentialrepresentations. This works because the relevant cocycle representationembeds in the tangential one. We are then led to consider the possiblerepresentations of large subgroups of Aut(Fd). Unfortunately, it turns outthat for subgroups large enough to contain the inner automorphism groupInn(Fd) the best that can be hoped for is a representation of the \induced I-A automorphism group Fd=F 00d " (terminology is from [1, Example 2, p.117]and means automorphisms of Fd=F 00d induced fromAut(Fd), F 00d is the secondcommutator group). We do �nd a faithful tangential representation here,however.We use the basic results of the theory of representation varieties of [3],and adopt its notation. For Fox calculus and braid groups, our reference is[1] (see also [4]).Tangential and Cocycle Representations



Tangential Linear Representations of AutomorphismGroups of Free Groups 55As noted, automorphisms of the free group Fd = hx1; : : :xdi will acton its representation varieties: if � 2 RnFd and � 2 Aut(Fd), then �� willbe the representation � � ��1. If the representation � is �xed by �, then� will act, via its derivative D(�)�, on the tangent space T�(RnFd). In [3,Thm. 3.8, p. 62] it was shown that this derivative could be interpreted asthe \Fox Jacobian" of �, namely the matrix [@��1xi=@xj]. We recall thisinterpretation, and its connection with automorphism action on cocycles.RnFd can be identi�ed with GLnCd via � 7! (�(xi)). Since for any A 2GLnC the tangent space TA(GLnC) is MnC; T�(RnFd) can be identi�edwith MnC(d), which we regard as column d-tuples of matrices. Fd acts onthese d-tuples via Ad � � on each entry. We de�ne the Fox Jacobian of� 2 Aut(Fd) as follows:De�nition 1. Let � 2 Aut(Fd). Then (@��1=@x) denotes the d � d�@��1(xi)=@xj�; the entries here are Fox derivatives [1, x3.1] and henceelements of Z[Fd]. We call this matrix the Fox Jacobian of �.Given a representation � of Fd (and hence Z[Fd]) we write (@��1=@x)�for the action of (@��1=@x) on d-tuples from the representation space of �.In this notation, we recall the statement of [3, Thm. 3.8, p.62].Jacobian Formula. Let � 2 RnFd be �xed by � 2 Aut(Fd). Then underthe identi�cation T�(RnFd)!MnC(d); D(�)� = (@��1=@x)Ad��.As pointed out in [3, Cor. 3.9, p.62], this identi�cation is compatiblewith the identi�cation [3, Prop. 2.2, p.33] of T�(RnFd) and Z1(Fd;Ad � �),where Z1 is identi�ed with MnC(d) via � 7! [�(xi)]. As we now note,cocycles in �xed representations (such as the above Ad � �) admit an auto-morphism action:Proposition 2. Let M be a �-module and H a subgroup of Aut(�). (�is any group). Assume that for all x 2 �; � 2 H and m 2 M , we havexm = �(x)m. Let � 2 Z1(�;M ) be a cocycle. Then �(�)(�) = � � ��1 isalso a cocycle and � : H ! GL(Z1(�;M )) is a group homomorphism.(We omit the elementary proof). As a corollary, we obtain for the freegroup Fd:Corollary 3. Let � in Proposition 2 be Fd. Then�(�)(�)(xi) = X (@��1(xi)=@xj)�(xj):Moreover, if we identify Z1(Fd;M ) with M (d) via � 7! [�(xi)] then �(�)on M (d) becomes multiplication by (@��1=@x).Proof. �(�)(�)(xi) = �(��1xi) which is expanded by the usual Fox for-mula [1, 3-2, p.105] to give the equation of the corollary. The matrix formulathen follows.For the free case considered in Corollary 3, we can be a little moreexplicit about the range of � : H 7! GL(Z1(Fd;M )). As stated, we identify



56 Andy R. MagidZ1(Fd;M ) and M (d), and the image of � preserves this d-tuple structure.Thus in fact the image of � lies in GLd(End(M )), the d�dmatrices over theendomorphism ring of M . If �M : Fd ! GL(M ) denotes the representationassociated to M , and if R is a subring of End(M ) containing �M (Fd), thenthe image of � is in GLd(R). We will have occasion to use these observationsbelow, where we refer to them as \restrictions on the image of � associatedto the restrictions on the image of �M" (to lie in R).Corollary 3 implies that at a �xed representation, the tangential action(Jacobian formula) is the same as the cocycle action (Proposition 2). Touse either of these actions to construct representations � of subgroups ofAut(Fd), we need �xed representations. We will actually be consideringsome subvarieties of �xed representations. We consider next the relevantformalities:Let V be a closed subset of RnFd with coordinate ring A = C[V ].Associated to (the inclusion morphism into RnFd from) V is a genericrepresentation PV : Fd ! GLn(A) de�ned by �(x) = PV (x)(�) for all� 2 V; x 2 Fd [3, Prop. 1.19, p.19]. It follows from the de�ning formulathat if every � in V is �xed by the subgroup H of Aut(Fd), then PV is also�xed byH. Using Proposition 2, this then de�nes a representation � ofH inGL(Z1(Fd;Ad�PV )), given by Corollary 3 by the matrix (@��1=@x)Ad�PV .For � 2 V; T�(RnFd) = Z1(Fd;Ad��) = Mn(C)(d), and we can think of thislatter as the evaluation of Mn(A)(d) at �. Since the action of Fd on Mn(C)via Ad � � is given by evaluating the action of Fd on Mn(A) via Ad �PV at�, we have that the di�erential action of H on T�(Rn) is the evaluation ofthe action via � on Z1(Fd;Ad � PV ). We record this observation for lateruse.Proposition 4. Let V be a closed subset of RnFd and let H be a subgroupof Aut(Fd). Assume that H �xes every element of V . Then the genericrepresentation PV of V is also �xed by H, and the representation � : H !GL(Z1(Fd;Ad � PV ) satis�es �(�)(�) = (D�)� for all � 2 V .Proposition 4 says that we can consider � as a parameterized familyof tangential representations (with parameter space V ). If the H-invariantsubset V of Proposition 4 is not only closed but also irreducible, its coordi-nate ring A, being an integral domain of the same cardinality as C, admitsa (non-C-linear) embedding into C, say f : A! C. Then we can considerthe representation � = GLn(f)PV : Fd ! GLnC obtained by applying fto the coordinates of PV . This representation is also H-invariant (since PVis) so we can consider the derivative action of H on T�(RnFd). As we nowshow, this is the same as the �-representation of H on Z1(Fd;Ad � PV ).Proposition 5. Let V be an irreducible closed subset of RnFd and let Hbe a subgroup of Aut(Fd). Assume that H �xes every element of V . Letf : C[V ] ! C be an embedding and let � = GLn(f)PV . Then, for � 2 H,the map induced by f carries �(�) to (D(�))� .Proof. �(�) acts on Z1(Fd;Ad � PV ) = Mn(A)(d) via (@��1=@x), by



Tangential Linear Representations of AutomorphismGroups of Free Groups 57Corollary 3 (here A = C[V ]). (D�)� acts on T�(RnFd) = Mn(C)(d) by(@��1=@x) by the Jacobian formula. The action of Fd on Mn(A) is byAd � PV ; the action on Mn(C) is by Ad � �. For D 2 Mn(A) and x 2 Fd,we have (Ad � PV )(x)(D) = PV (x)DPV (x)�1 so (Ad � �)(x)(Mn(f)(D)) =Mn(f)(Ad � PV )(x)(D)). Thus the proposition follows.Because of Proposition 5, the action of subgroups H of Aut(Fd) fromirreducible subsets is just a special case of derivative actions in tangentspaces. In fact, since every closed subset is a union of �nitely many irre-ducibles, every action from closed subsets is a �nite product of derivativeactions on tangent spaces.To produce closed subsets of �xed representations, we can use themethod of [1, x3.2]: we consider representations of quotients of Fd on whichthe automorphisms we study are trivial.Proposition 6. Let ' : Fd ! G be a surjective homomorphism. LetH be a subgroup of Aut(Fd) with '� = ' for all � 2 H. Let V denotethe image of RnG in RnFd. Then V is a closed subset of RnFd �xedelementwise by H, the generic representation PV of V factors through 'and the �-representation of H on Z1(Fd;Ad�PV ) factors through the grouphomomorphism �', from H to GLd(Z[G]) given by �'(�) = (@��1=@x)'.Proof. The map � 7! �' from RnG to RnFd is a closed immersion [3,Prop. 1.7, p.8] and its image V is �xed by H. If P denotes the genericrepresentation of RnG, it is clear that PV = P'. Thus Ad � PV factorsthrough ' also, so that �(�) = (@��1=@x)Ad�PV acts by (@��1=@x) through', then P , and �nally Ad.The homomorphism �' of Proposition 6 can also be regarded as aspecial case of Corollary 3:Proposition 7. Let ' : Fd ! G be a surjective homomorphism. LetH be a subgroup of Aut(Fd) with '� = ' for all � 2 H. Regard Z[G]as an Fd- module via '. Under the identi�cation of Z1(Fd;Z[G]) withZ[G](d); � : H ! GL(Z1(Fd;Z[G]) becomes �'.Proof. For f 2 Z[G]; x 2 Fd and � 2 H, we have �(x)f = '(�(x))f ='(x)f = xf , so Corollary 3 applies; it is clear that multiplication by(@��1=@x) on Z[G](d) acts via ', hence by (@��1=@x)' = �'(�).Examples and ApplicationsThe homomorphism �' of Proposition 6 is also used by Birman [1,Thm. 3.9, p.116] to explain the construction of some representations ofsubgroups of Aut(Fd). Proposition 5 shows that the parameterized familyof tangential representations on the image of RnG factors through (in asense) the homomorphism �'. We examine Birman's examples from thispoint of view.



58 Andy R. MagidExample B. (The Burau representation of the braid group Bd). [2, p.536]Bd is the subgroup of all � 2 Aut(Fd) satisfying: � permutes and conjugatesthe generators x1; : : : ; xd, and preserves the product x1 : : :xd [1, Thm. 1.9,p.30]. Let Z = hti be an in�nite cyclic group and de�ne ' : Fd ! Z by'(xi) = t. The Burau representation is then �' : Bd ! GLd(Z[t; t�1]) [1,Example 3, p.118]. As remarked in Proposition 7, �' here is the represen-tation � : Bd ! GL(Z1(Fd;Z[Z])). We want to consider this representationas a tangential one. We work with n = 2. The full image of R2Z in R2Fdwill be too large for our purposes, and we consider instead the subset V ofrepresentations where t is represented by a diagonal elementary matrix:V = f� 2 R2Fdj�(xi) = diag(s; 1); s 2 C�; 1 � i � dg:V has coordinate ring C[s; s�1] = A, is closed in R2Fd, and is invariantunder Bd. The generic representation PV is given by PV (xi) =diag(s; 1))in GL2(A) so that Ad � PV is given as follows on M2(A):(Ad � PV )(xi) � a bc d � = � a sbs�1c d � :This equation shows that, as an Fd-module, Ad�PV is isomorphic to a directsum of four copies ofA, with Fd trivial on the diagonal copies ofA and actingvia multiplication by s (or s�1) on the o� diagonal copies. But A, with Fdaction by multiplication by s, is isomorphic to the group algebra C[Z] withFd acting through '. We thus have C[Z] as an Fd-module direct summandof Ad �PV . This makes Z1(Fd;C[Z]) a summand of Z1(Fd;Ad �PV ). Therepresentation of Bd on Z1(FdC[Z]) is given by the Burau matrices �'(�) =(@��1=@x)' by Proposition 7. The representation of Bd on Z1(Fd;Ad �PV ) is given, by Proposition 4, as a parameterized family of derivativerepresentations, with parameter s 2 C�. By Proposition 5, this familyis also realized at a single representation � = GL2(f)PV , where f is anyembedding of A. Thus we conclude that the Burau representation is a directsummand of the tangential representation of �.Example G. (The Gassner representation of the pure braid group Pd).[2, p.536] Pd is the subgroup of all � 2 Aut(Fd) satisfying: � conjugatesthe generators x1; : : : ; xd and preserves the product x1 : : : xd [1, Cor. 1.8.3,p.25]. Let Zd = ht1; : : : ; tdi be the free abelian group on t1; : : : ; td andde�ne ' : Fd ! Zd by '(xi) = ti. The Gassner representation is then �' :Pd ! GLn(Z[t1; t�11 ; : : : ; td; t�1d ]) [1, Example 4, p.119]. This is realizedtangentially as in Example B. First, we note that �' is also � : Pd !GL(Z1(Fd;Z[Zd])). Then we consider the subset V of the image of R2Fd inR2Fd de�ned by V = f� 2 R2Fdj�(xi) = diag(si; 1); si 2 C�; 1 � i � dg.V is closed in R2Fd, invariant under Pd, and has coordinate ring A =C[t1; t�11 ; : : : ; td; t�1d ]. The generic representation PV is given by PV (xi) =diag(si; 1) in GL2(A), so that Ad � PV acts on M2(A) by



Tangential Linear Representations of AutomorphismGroups of Free Groups 59(Ad � PV )(xi) � a bc d � = � a sibs�1i c d � :As before, since A = C[Zd], we haveC[Zd] as an Fd-module direct summandof Ad �PV so that Z1(Fd;C[Zd]) is a direct factor of Z1(Fd;Ad� �) so thatthe Gassner representation is a direct factor of the family of derivativerepresentations parameterized by V , and hence a direct factor of a singletangential representation.Now, we want to consider using �xed representations to represent\large" subgroups of Aut(Fd); that is, subgroups containing (at least) theinner automorphisms. We �rst remark that such representations are neces-sarily abelian:Lemma 8. Let � 2 RnFd. Then � is �xed by all inner automorphism ofFd i� Ker� contains (Fd; Fd).Proof. If In(y) �xes �; �(y�1xy) = �(x) for all x 2 Fd, so �(y�1xyx�1) =e. If this holds for all y; � vanishes on all commutators. Conversely, if � isabelian, Inn(Fd) �xes �.Next, we use a result of Blanch�eld [1, Thm. 3.5, p.107] to determinewhen a � representation vanishes on an inner automorphism.Lemma 9. Let M be an Fd-module, H a subgroup of Aut(Fd) containingInn(Fd), and suppose H �xes the representation � a�orded by M . As-sume that 1 is not an eigenvalue of some �(xi). Then � � In : Fd !GL(Z1(Fd;M )) has kernel (Ker�,Ker�).Proof. We identify Z1(Fd;M ) with M (d) so that, by Corollary 2, �(�)has matrix (@��1=@x) for � 2 H. If � = In(y), then �(�) has matrix�@(y�1xiy)=@xj��. Fox derivative calculations give that@(y�1xiy)=@xj = y�1[(xi � 1)@y=@xj + �ij ]so that the (i; j)-entry of �(In(y)) is obtained by applying � to the aboveequation. By assumption, for some i �(xi) � 1 is invertible. Then if�(In(y)) = I, we have �(@y=@xj ) = 0 for all j. By Blanch�eld's result[1, Thm. 3.9, p.10], we conclude that y 2 (Ker�,Ker�). Conversely, ify 2 (Ker�,Ker�), then �(y�1) = 1 and, by [1, Thm. 3.7, p.107] again,�(@y=@xj ) = 0 for all j, so �(In(y)) = I.Lemma 9 allows us to determine the kernel of � in these same circum-stances.Proposition 10. Let M; H and � be as in Lemma 9. Then � : H !GL(Z1(Fd;M )) has the same kernel as the canonical mapH ! Aut(Fd=(Ker�;Ker�)):Proof. If �(�) = I then the formula�In(x)��1 =In(�(x)) implies that (��In)(�(x)) = (� � In)(x), so that �(x) � x (modulo (Ker�)0 = (Ker�,Ker�)).



60 Andy R. MagidConversely, if ��1(xi) = xiyi where yi 2 (Ker�)0 for i = 1; : : : ; d, then(@��1(xi)=@xj) = �ij + (@(yi)=@xj) so that, applying �, we �nd using [1,Thm. 3.5., p.107] that �(�) = I.Because of Lemmas 8 and 9, the best we can hope for in a tangentialrepresentation of a subgroup of Aut(Fd) which contains Inn(Fd) is a kernelcontaining Inn(F 00d ), where F 0d = (Fd; Fd) and F 00d = (F 0d; F 0d). As we nowshow, we can achieve this by the methods of Example G.Example I.I.A. Let Zd = ht1; : : : ; tdi be the free abelian group ont1 � � � td, as in Example G. Let s1; : : : ; sd in C be independent transcen-dentals so that Zd ! C� by ti 7! si is an injection. De�ne � 2 R2Fdby �(xi) = � si 00 1 � :As in Example G, (Ad � �)(xi) on M2C preserves the subspace� 0 b0 0 �and acts on it by multiplication by si. The resulting homomorphism Fd !GL1C factors through the above injection Zd ! C� so Ker(Ad � �) =(Fd; Fd) = F 0d. By Lemma 8, � is �xed by Inn(Fd). Of course, we alsohave Ker� = F 0d. Thus � 2 Aut(Fd) �xes � if and only if �(x) � x (modF 0d) for all x, so that � is the identity modulo F 0d. It follows that thesubgroup K = f� 2 Aut(Fd)j� = 1 mod F 0dg is the stabilizer of �. ByProposition 10, the representation � : K ! GL(T�R2Fd) has the samekernel as K !Aut(Fd=F 00d ); we denote this kernel by H. The group K iscalled the group of I � A automorphisms [1, Example 2, p.117] and K=His the group of automorphisms of Fd=F 00d induced by I �A automorphismsof Fd [1, Example 2, p.117]. Our results now imply that:The group of induced I �A (I.I.A) automorphisms of Fd=F 00d has a faithfullinear representations in GL(Z1(Fd;Ad � �)) = GL4dC.References[1] Birman, J., Braids, Links, and Mapping Class Groups, Annals of MathStudies 82 Princeton (1975)[2] Long, D., On the linear representations of braid groups, Trans. Amer.Math. Soc. 311 535{560 (1989)[3] Lubotzky, A. and Magid, A., Varieties of representations of �nite{lygenerated groups, Mem. Amer. Math. Soc. 336 (1985)[4] Moran, S., The Mathematical Theory of Knots and Braids: an Intro-duction, North-Holland Mathematics Studies 82 North-Holland Ams-terdam (1983)
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