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Introduction

The structure of the Lax-Wendro� cell vertex �nite volume method
is examined and a family of numerical algorithms based on using explicit,
pseudo-unsteady, spatially centered formulations are developed. These are
based on a \multicolor" update technique, based on split grids on regular,
structured meshes. A comparison is made with the standard Lax{Wendro�
algorithm, and applications to obtaining steady state solutions to the equa-
tions of inviscid, compressible gas dynamics are presented.

1. The problem

The interest is in introducing algorithmic modi�cations into the cell
vertex �nite volume formulation used for solving problems of the form

wt + fx(w) + gy(w) = 0; (1)

where w is the vector of dependent values, and f , and g are ux vec-
tors de�ned on a domain (x; y) � t. This hyperbolic pde models convec-
tive transport without viscous damping terms. In this paper a multicolor
variation (designated as MC) of the standard cell vertex update based on
Lax{Wendro� (LW) is introduced and discussed. This has some interest-
ing advantages, notably: (1) neutral stability, thus additional dissipation is
not required to stabilize the scheme; (2) internal grids which are uncoupled
to arti�cial boundaries; (3) larger e�ective computational stencil, thereby
yielding larger e�ective CFL numbers; (4) a choice of second order correc-
tions; and, (5) it is easily implemented into any standard cell vertex code.
On the other hand, its di�culties must be understood. These include: (6)
the presence of a transient spurious mode; and, (7) its algorithm cost.
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Aspects of the Finite Volume Method 13

The cell vertex method expresses the the dependence ofw on t in terms
of the spatially dependent uxes by using a Lax-Wendro� type expansion:

�w(t+�t)

= ��t(fx + gy) +
1

2
�t2

�
@

@x
A(fx + gy) +

@

@y
B(fx + gy)

�
:

(2)

The �rst term on the right hand side of (2) which is linear in �t is de-
noted as the �rst order term, and to the second term which depends on
�t2 is denoted as the second order term. The combination of �rst order
and second order terms in (2) form the basis for the time iterative algo-
rithms considered. The approach will be to consider separately each �nite
volume mesh associated with each update term, in contrasts with the usual
emphasis only on the mesh associated with the dependent variables.

The �nite volume method has been successfully applied to the solution
of inviscid, compressible ow problems represented by (1). In choosing
between the cell vertex and cell volume �nite volume methods, motivation
is derived from technical arguments which appear to favor the cell vertex
method [4, 5, 6], and by its exibility which opens the possibilities for
constructing interesting modi�cations of the basic scheme. Much of this
follows on the work of Morton and Paisley [3], and their investigations of
the application of the cell vertex methods to solving the Euler equations.

2. Finite volume formulation

It is desirable to impose to conditions on the development of �nite
volume methods: (1) the structure and connectivity of the meshes must be
arranged so as to assure conservation, and (2) the computational stencil
is kept minimal. Taking the computational stencil too large means that
the estimates of the partial derivatives become less localized and introduc-
ing additional points into the stencil can introduce undesirable spurious
solutions.

The �nite volume formulation is constructed from the integral form of
(1) using

d

dt

Z

l

wd
 = �
Z
@
l

f (w)dy � g(w)dx = 'l: (3)

In the cell vertex method, the discretization is carried out with respect to
the control volume, or cell 
l. In computing steady state solutions it is
required that 'l = 0 for each computational cell.

3. Mesh structure

The computational cell 
l 2 Dh is a convex, polygonal region whose
boundary contains vertices i(l), i = 1 : : :Nl located at xi. The domain is
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subdivided into cells 
l such that they form a partition of Dh, that is

ND[
l=1


l = Dh (4)

constructed such that,


k

\

l = @
k

\
@
l 8 k 6= l: (5)

A further degree of complexity is introduced in the description of the �-
nite volume construction, in that the necessary connectivity (with suitable
relaxation at the boundaries) admits unions over disjoint partitions of Dh.
That is, families of sets of cells are allowed, each of which satisfy the re-
quirements of (4) and (5). To avoid notational di�culties, the index i is
reserved to denote the locations of the dependent variables associated with
the cell vertices, and the index l to denote the numbering of the cells in
Dh, and hence the variables associated with cell dependent quantities.

The boundary integral in (3) is discretized over the cell 
l by applying
the trapezium rule along each edge on the boundary of 
l. The discrete
cell residual Rl for 
l is

Rl =
1

Vl

NlX
i=1

1

2
(fi + fi+1)(yi+1 � yi)� 1

2
(gi + gi+1)(xi+1 � xi); (6)

where the index i is taken modulo Nl + 1. The notation is used that fi =
f (Wi) whereWi is the discrete vector of dependent variables corresponding
to wi at the vertex xi.

Equation (6) conveniently de�nes a map T1 from the dependent vari-
ables, Wi, to the cell residual, Rl. There is no completely satisfactory way
of relating these residuals back to the dependent variables at the vertices of
the cell. There are several ways of closing the loop, that is, of constructing
a map T2 relating the cell dependent values back to the vertices:

� By looking at an ensemble of cells each of which contains a given vertex,
the boundary integral, and hence the residual for this ensemble, can
be related to the update at this vertex using a linear combination of
the cell residuals.

� By arranging the connectivity of the mesh so that the mapping from
the cell residual to each vertex is necessarily unique.

� By assigning the residual, or fraction of the residual, to a vertex based
on a decomposition following, for example, the characteristic direc-
tions.

The �rst two possibilities are examined, in which case the structure of
T2 depends entirely on the connectivity of the mesh. This will allow the
construction of T = T2 � T1, giving the iteration Wn+1 = T (Wn).
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In either case it is natural to de�ne an element 
L(i) as the control
volume associated with the vertex xi and T2 as the bijection between uxes
into 
L(i) and the update at the vertex xi. In general, in the interior

of Dh, 
L(i) contains xi wholly within its interior, that is xi 2 
L(i) and
xi 62 @
L(i). This is modi�ed in an obvious way to account for the boundary

of Dh. It is useful to de�ne l(i) to be the set of all cell indices l such that
xi 2 
l. The element 
L(i) is de�ned with volume VL containing xi as


L(i) =
[
l(i)


l; VL =
X
l(i)

Vl: (7)

This is the smallest control volume which is centered on xi.

3.1. Regular meshes

On a regular mesh in the interior of the domain the number of vertices
associated with each cell 
l is constant, and the number of cells which
compose each element 
L is constant. On a regular mesh, the vertices may
be partitioned into equivalence classes, de�ned by the cancellation of the
uxes along the boundaries of the elements in the interior of Dh.

For example, on a regular quadrilateral mesh, every vertex can be
written in terms of its (i; j) coordinate. Using this the domain can be par-
titioned into elements whose center vertices are equivalent to the canonical
vertices located at (i; j), (i+ 1; j), (i; j + 1) and (i+ 1; j+ 1), yielding four
equivalence classes. Using parenthetic subscript notation to indicate a par-
ticular vertex which belongs to a given equivalence class, that is, xi;j 2 Dh

(�;�)
if i(mod 2) = 0 and j(mod 2) = 0, xi;j+1 2 Dh

(�;+) if i(mod 2) = 0 and

j + 1(mod 2) = 1, and so on, the vertices in mesh G1 can be written as the
disjoint union,

Dh
� = Dh

(�;�)
[

Dh
(+;�)

[
Dh
(�;+)

[
Dh
(+;+): (8)

Alternatively, by using sets of overlapping meshes (two families) a �-
nite volume mesh can be constructed in which the element is equivalent
with a cell. This mesh is referred to as G2. On these meshes the vertices
from each class lie inside the cells from the other equivalence class. Con-
sequently, except for some di�culties at boundaries, there is a unique cell
ux associated with the update of each vertex. The vertices in this mesh
can be expressed as the disjoint union

Dh
� = Dh

(�;�)
[

Dh
(+;+): (9)
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3.2. The update for LW

In the application of the Lax{Wendro� update, the approach is to use
G1 to form a simultaneous linear combination of the cell residuals to update
each vertex. This can easily be extended to meshes of the type G2.

The �rst order update �Wl for a cell 
l is given by

�Wl = ��tlRl; (10)

where the time �tl depends on the cell 
l and the local wave speed. By
combining the residuals, �Wi is constructed for each cell containing xi
using volume weighting [1], in which case

�Wn+1
i = � 1

VL

X
l(i)

�Wn
l Vl = ��t

VL

X
l(i)

Rn
l Vl: (11)

To accommodate the second order update in a conservative fashion A
subsidiary mesh, ~Dh, is introduced. The structure of ~Dh is dependent on
Dh which is used to construct the �rst order update.

The second order term is given by the ux of the Jacobians times the
uxes, that is

d

dt

Z
~
i

wtd
 =

Z
@~
i

A(w)(fx + gy)dy +B(w)(fx + gy)dx; (12)

where ~
i is the control volume containing the vertex xi. The discrete second
order update can be interpreted based on the ux through the boundaries
of this element ~
i formed by the vertices at xl contained in each cell 
l.
The second order residual ~Ri associated with the cell ~
i is given by

~Ri =
1

Vi

NX
l=1

1

2
(AlRl +Al+1Rl+1)(yl+1 � yl)

� 1

2
(BlRl + Bl+1Rl+1)(xl+1 � xl);

(13)

where Al and Bl are located at xl, Vi is the volume of ~
i and N is the
number of cells surrounding the vertex Vi. Following from (2), the second
order correction at time level n+ 1 is then given by (�t2=2) ~Rn

i .

3.3. Constructing the update for MC

The LW iteration consists of solving for the uxes and then combining
these uxes to obtain the update of the dependent variable at each vertex,
xi, that is,

�Wn+1
i = ��t

�
Rn

L �
�t

2
~Rn
i

�

= ��t

0@ 1

VL

X
l(i)

Rn
l Vl �

�t

2
~Rn
i

1A :

(14)
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Thus each vertex is updated by a linear combination of the residuals occur-
ring over 
L and ~
i. In formulating multicolor variants of LW, a discrete,
conservative, nondissipative, stable operator is desired. The dissipation is
introduced to achieve improved convergence, rather than as a means of
stabilizing the iteration, as in Lax{Wendro�.

3.4. The �rst order term for MC

As a consequence of splitting the mesh into equivalence classes, suc-
cessive updating can be accomplished on G1 if the dependent variables are
updated in each equivalence class at a new time step. On G1:

�Wn+4
i+1;j+1 = � �t

Vi+1;j+1

X
l(i+1;j+1)

VlR
n+3
l (15)

�Wn+3
i;j+1 = � �t

Vi;j+1

X
l(i;j+1)

VlR
n+2
l (16)

�Wn+2
i+1;j = � �t

Vi+1;j

X
l(i+1;j)

VlR
n+1
l (17)

�Wn+1
i;j = � �t

Vi;j

X
l(i;j)

VlR
n
l ; (18)

where the index l(i; j) indicates the cells which contribute to the update of
the vertex at xi;j .

The reason for looking at meshes in terms of contiguous equivalence
classes is that conservation can be strictly maintained on each mesh. In
solving systems of equations using iterative methods, Jacobi or Gauss{
Seidel iteration can be used. In Jacobi iteration, newly updated components
of the solution vector are known but not used in computing the remaining
components. The new components are introduced at the end of each cycle,
hence the updates are done simultaneously. In Gauss{Seidel iteration the
updates are done successively as they become known. In solving a problem
using explicit time stepping those vertices on which conservation can be
maintained, that is, those vertices within an equivalence class, are updated
simultaneously, and those in di�erent classes are updates successively.

3.5. The second order term for MC

The explicit introduction of the second order correction is examined.
Having evaluated (15){(18), a second order correction, similar to that in
LW, is easily constructed:

�Wn+�
i;j =

�t2

Vi;j
~R�
i;j: (19)
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where � indicates several possibilities for the time level. Consider, for ex-
ample, the residual R�

i;j associated with element 
i;j, consisting of the
Jacobian weighted ux around the vertices xi+1;j, xi+1;j+1, xi;j+1, and

xi;j . In computing ~Ri;j, all of the required cell dependent quantities can
be evaluated uniformly over the mesh. This is equivalent to introducing a
new time level n+ 5 for the second order correction, that is,

R�
i;j =

1

2
[ ((AR)n+5i+1;j � (AR)n+5i;j+1)(yi+1;j+1 � yi;j)

+ ((AR)n+5i+1;j+1 � (AR)n+5i;j )(yi;j+1 � yi+1;j)

� ((BR)n+5i+1;j � (BR)n+5i;j+1)(xi+1;j+1 � xi;j)

� ((BR)n+5i+1;j+1 � (BR)n+5i;j )(xi;j+1 � xi+1;j) ] :

(20)

If, instead, these are used from the previously available time steps, then

R�
i;j =

1

2
[ ((AR)ni+1;j � (AR)n+2i;j+1)(yi+1;j+1 � yi;j)

+ ((AR)n+1i+1;j+1 � (AR)n+3i;j )(yi;j+1 � yi+1;j)

� ((BR)ni+1;j � (BR)n+2i;j+1)(xi+1;j+1 � xi;j)

� ((BR)n+1i+1;j+1 � (BR)n+3i;j )(xi;j+1 � xi+1;j) ] :

(21)

This is signi�cantly more e�cient in terms of numerical operations.

3.6 Total update for MC

The total update for MC is formed in the same manner as for LW,
except that the �rst and second order updates occur at di�erent time levels.

There are several further possibilities in applying the second order
correction to the �rst order update. For example, apply several �rst order
corrections before applying the second order term. Denote by c1, c2, c3, c4
the four convective steps which constitute one complete convective update
cycle on a regular two-dimensional mesh.. Denote by d the application
of a Jacobian based damping cycle and by s the application of additional
smoothing. Then sequences such as,

Sequence

C1ds (c1; c2; c3; c4); d; s; (c1; c2; c3; c4); d; s; : : :

C2ds (c1; c2; c3; c4)
2; d; s; (c1; c2; c3; c4)

2; d; s : : :

...

Cnds (c1; c2; c3; c4)
n; d; s; (c1; c2; c3; c4)

n; d; s; : : :

(22)

can be constructed; or, even more damped systems such as

C
1
2 d)s (c1; c2; d; c3; c4; d); s : : :

C
1
4 d)s (c1; d; c2; d; c3; d; c4; d); s : : :

(23)
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Indeed, because the damping is so important it is preferable to refer to the
damped versions as just MC (i.e, without any quali�ers).

4. One-dimensional analysis of MC

Consider the construction of a discrete solution in one dimension for
the convection equation

wt + awx = 0;

using the �nite volume method with successive updating of the dependent
variables. Let x0; x1; x2; : : :xN be a uniform partition of the domain, [a;b].
In one dimension there are two equivalence classes of meshes. Let 0 � j �
N be the index of any vertex. Designate by (�) those vertices such that
j(mod 2) = 0 and by (�) those such that j(mod 2) = 1. The minus sign
indicates that the shift is to j� 1 from j. Discretize (24) on the vertices at
(�) and (�) by

Wn+1
(�) �Wn�1

(�) +
�t

2

�
R
n� 1

2

(�)� 1
2
+R

n�1
2

(�)+ 1
2

�
= 0; (25)

Wn+2
(�) �Wn

(�) +
�t

2

�
R
n+ 1

2

(�)+ 1
2
+R

n+ 1
2

(�)� 1
2

�
= 0; (26)

and rewrite this using � = a�t=2�x, as the �nite di�erence formulation

Wn+1
(�) �Wn�1

(�) + �
�
Wn

(�)+2 �Wn
(�)

�
= 0; (27)

Wn+2
(�) �Wn

(�) + �
�
Wn+1

(�) �Wn+1
(�)�2

�
= 0: (28)

Since (�) � 1 � (�) and (�) � 1 � (�), an explicit representation of the
coupling between equivalence classes is obtained, which is inherent in this
system of equations.

4.1. Stability analysis

This is rewritten as a one step scheme. Substituting Wn+1
(�) in place of

Wn+2
(�) and Wn

(�) in place of Wn�1
(�) in (27){(28), A more compact expression

for the system of di�erence equations is obtained,

Wn+1
(�) �Wn

(�) + �
�
Wn

(�)+2 �Wn
(�)

�
= 0; (29)

Wn+1
(�) �Wn

(�) + �
�
Wn+1

(�) �Wn+1
(�)�2

�
= 0: (30)

In e�ect, the two meshes are equated onto the same time level, instead
of having a gap at alternate time levels on alternate meshes. This also
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amounts to a rede�nition of � in (29){(30). De�ning the shift operator
S� = exp(�i��x), then (29){(30) can be written as"cWn+1

(�)cWn+1
(�)

#
= G

"cWn
(�)cWn
(�)

#
; (31)

where the ampli�cation matrix G is

G =

�
1 ��S+(S+ � S�)

��S�(S+ � S�) 1 + �2(S+ � S�)2:

�
(32)

Substituting exp(�i�h) in place of S� and making use of the usual trigono-
metric identities

G =

�
1 2� sin(�h)[sin(�h)�i cos(�h)]

�2� sin(�h)[sin(�h)+i cos(�h)] 1� 4�2 sin2(�h)

�
:

(33)
Solving for the roots of the characteristic polynomial of G � �I, j�j = 1 if
j�j � 1. Note that after every node has been updated, two time steps have
been taken instead of one. This gives an e�ective cell based CFL number
�0 = a�t=�x = 2.
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a) Leapfrog (LF) b) Staggered leapfrog (SLF)

j�1 j

Centered discretizations for the �rst order update in one dimension

The discretization of the convection equation using the �nite volume
method obtained by splitting the �rst order update in one dimension has a
spectrum which is recognized to be the same as that of staggered leapfrog
method (SLF). Looking at the computational stencil for SLF, expanding
the usual half step representation onto full steps, it can be seen that SLF
is closely related to the leapfrog method which is also nondissipative. The
computational stencil for leapfrog (LF) is given by

Wn+1
(�) �Wn�1

(�) + �
�
Wn

(�)+2 �Wn
(�)

�
= 0; (34)

Wn+1
(�) �Wn�1

(�) + �
�
Wn

(�) �Wn
(�)�2

�
= 0: (35)
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In leapfrog there are two computational grids which which can be colored
red (�) and black (�). At each time level the ux computed on the red grid,
that is by di�erencing across two adjacent red points, yields the update on
the red grid and the ux computed on the black grid yields the update on
the black grid. Thus in terms of von Neumann stability analysis, there is
only one grid to consider. In staggered leapfrog, unlike leapfrog, the red
and black grids are directly coupled at alternate time levels. At each time
level there is only one grid. The computation of the ux on the red grid
determines the update on the black grid, and the computation of the ux on
the black grid determines the update on the red grid. Thus the restriction
of MC to their one-dimensional analogs on G1 and G2 is related to staggered
leapfrog.

4.2. MC with damping

Consider the introduction of a dissipative operator into the dispersive
scheme introduced in (29){(30). For the one-dimensional convection prob-
lem which is being considered, a familiar smoother is given by the second
order term of the Lax-Wendro� update. Since this applies uniformly to each
vertex (i.e., no equivalence classes) the parenthetic notation is dropped to
obtain

Wn+1
j �Wn

j � �t2

2

�
1

�x

�
aRn

j+1
2
� aRn

j�1
2

��
= 0: (36)

Using the de�nitions of the cell residual and de�ning  = (a�t=�x)2, this
is written as a two step scheme,

Wn+1
(�) �Wn

(�) �


2

�
Wn

(�)+2 � 2Wn
(�) +Wn

(�)

�
= 0; (37)

Wn+1
(�) �Wn

(�) �


2

�
Wn

(�) � 2Wn
(�) +Wn

(�)�2
�
= 0: (38)

The ampli�cation matrix is obtained for (36),

Gs =

�
1�  

2S+(S+ + S�)

2S�(S+ + S�) 1� 

�
(39)

Making the substitutions exp(�i�h) = S� with h � �x, and using suitable
trigonometric relationships,

Gs=

�
1�  cos(�h)[cos(�h)+i sin(�h)]

 cos(�h)[cos(�h)�i sin(�h)] 1�
�
: (40)

The eigenvalues of (40) are given by � = 1� (1� cos �h). The inten-
tion is to smooth the dispersive SLF update. In the one-dimensional case,
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(29){(30) can be applied followed by an application (36). This amounts to

composing Gs with G such that cWn+1 = GsGcWn,"cWn+1
(�)cWn+1
(�)

#
= GsG

"cWn
(�)cWn
(�)

#
(41)

A second order update is done after the �rst order update has been com-
pleted for each equivalence class. Computing (GsG) explicitly,

(GsG)11=1��2i� sin(�h) cos(�h);
(GsG)12=[4�2 cos2(�h)+2�(�1)+ (1�4�2)] cos2(�h)+2�(1�)

+i
�
4�2 cos2(�h)+[2�(�1)+(1�4�2)]

�
sin(�h) cos(�h);

(GsG)21=(2�(1�)+ ) cos2(�h)+2�(�1) (42)

�i(2�(1�)+ ) sin(�h) cos(�h);

(GsG)22=(4�2(1�)) cos2(�h)+(4�2 � 1)(�1)� 2i� sin(�h) cos(�h):

Instead of examining the eigenvalues of this matrix which are analytically
unwieldy, the eigenvalues of the matrix for a limiting case are constructed.
The stability limit on the smoothing step occurs when  = 1. Substituting
this into (42) gives (GsG) =0@�2i� sin(�h) cos(�h) [1�4�2 sin2(�h)] cos2(�h)

+i[1�4�2 sin2(�h)] sin(�h) cos(�h)
cos2(�h)�sin(�h) cos(�h) �2i� sin(�h) cos(�h)

1A (43)

Clearly, it is desirable like to be able to take � as large as possible. Com-
puting the eigenvalues of (43) gives,

�� = � cos(�h)
q
1� 4�2 sin2(�h)� 2i� sin(�h) cos(�h): (44)

If the maximum stability limit on the dissipative step is met, the convective
step is limited to a CFL number which is less than the maximum permitted
for �.

Comparing (44) as a function of �h and � 0 shows the existence of two
regions of growth for some values of �h if � 0 > 1:48 with  = 1:0. For
� 0 = 2� � 1, the ampli�cation factor given by (44) is given by j�j =
j cos(�h)j. The change in the ampli�cation factor given by GsG varies as
a function of � 0 for values of , showing a smooth transition from  = 0,
which corresponds to no damping, to  = 1 which corresponds to maximum
damping. If  > 1, the ampli�cation factor j�j > 1 for all values of � 0, hence
the scheme is unstable.

There are a number of advantages to doing this smoothing separately
from the convection operator as opposed to Lax{Wendro� where because
of stability considerations the two are linked together on the same step. In
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[8], Sod uses a second order dissipative update after a number of nondissi-
pative leapfrog steps to maintain the coupling between the two grids of the
leapfrog method. In MC the grids do not decouple, however damping is
required to enhance convergence and to facilitate the removal of transient
spurious modes. In any case, the lesson is that the damping and dispersive
CFL numbers cannot be taken independently. In addition, the existence of
undamped, high frequency modes [2] in two dimensions means that damped
MC is a necessity in two dimensions.

4.3. Transient spurious modes

In using SLF to solve the convection equation, the system of equations
is modeled by

ut + avx = 0; (45)

vt + aux = 0: (46)

This is the wave equation,

utt � a2uxx = 0 (47)

written as a system of �rst order di�erential equations. The two grids in
SLF arise in considering the solution of the equation in u and v on two
separate grids coupled at alternate time levels. In applying SLF to the
convection equation in one dimension, a single equation is discretized in
one dependent variable as two �nite di�erence equations in two dependent
variables, that is, a dependent variable is associated with each equivalence
class on the grid. If (45){(46) are diagonalized by adding and subtracting
the two equations, the system of equations�

u+ v

2

�
t

+ a

�
u+ v

2

�
x

= 0; (48)�
u� v

2

�
t

� a

�
u� v

2

�
x

= 0: (49)

is obtained.

There are two waves traveling at a characteristic velocities of a and
�a. Thus SLF allows us to correctly approximate the behavior of the solu-
tions of the wave equation. The waves will travel undamped at the correct
speed in both directions. However, for the unsteady convection equation,
a spurious solution traveling at �a is introduced. Signi�cantly, under suit-
able restrictions, the steady state solutions to systems of conservation laws
using LW or MC are the same. That is,
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Theorem 1. Let W be the steady state solution obtained for the initial
boundary value problem wt + fx = b using MC. If the residuals decouple
at steady state (i.e., the net residual in each element is zero because each
individual cell residual is zero), then there is no mode associated with spu-
rious eigenvalues; that is, the solution is consistent with that which would
be obtained using the LW method.

Proof. At steady state W(j) is a �xed point of the iteration since the ux
across the cells (j � 1) and (j + 1) is zero. Similarly, the spurious mode
W(j+1) is a �xed point since the ux across the cells (j) to (j + 2) is zero.
If the residuals decouple at steady state, it also follows that the ux in the
interval (j) to (j+1) is zero. This corresponds to the steady state solution
obtained: hence, there is no spurious mode at convergence. �

Note that the boundary conditions play a signi�ncant role in assuring
that the residuals decouple. In one dimension this will always happen [3]. In
modeling the one dimensional convection equation, undamped MC admits
a spurious mode associated with a wave traveling in the wrong direction.
If no additional boundary conditions are imposed on the internal mesh, the
solution u(+) = c, where c is an arbitrary constant, is admissible on these
alternate mesh locations, even if the solution has been found at locations
u(�). This spurious mode is of low frequency, having a wavelength equal
to the length of the domain. More signi�cantly, it is unstable with respect
to perturbations: the solutions u(+) can persist only if the ux on the
mesh u(�) vanishes exactly. This is important since the decoupling of the
residuals in more than one dimension cannot always be assured, increasing
the importance of the numerical viscosity in eliminating these metastable
modes.

While the spurious solution can be eliminated by imposing an addi-
tional boundary condition, say u � v = 0, this can really only be done
e�ectively in the linear, one dimensional case. As it stands the spurious so-
lution introduced by the alternate, internal mesh is unstable and does not
a�ect the steady state result. There is an advantage in not specifying any
additional boundary conditions. Except for linear problems, the imposition
of correct boundary conditions for hyperbolic systems is di�cult, inducing
spurious reections at the boundary. In e�ect the meshes in MC which are
internal to the domain avoid this.

5. One dimensional applications

To obtain a one-dimensional model,the conservation laws are inte-
grated over the cross sectional area S and neglect variations across S. Then
the pressure at the nozzle boundary adds a momentum source term pdS=dx
to give

wt + fx(w) = b(x); (50)
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where

w =

24 �
�u
�e

35 ; f (w) =
24 �u
(p+ �u2)
u(p+ �e)

35 ;b(x) = � 0
pSx=S

�
: (51)

having substituted � for S�� and p for Sp�, where �� and p� are the nondi-
mensionalized density and pressure. This is a model of the Laval nozzle,
containing a source term in place of the y component of momentum.

5.1. Discretization

Let �1 = x1 < x2 < : : : < xN�1 < xN = 1 de�ne a partition of
Dh. The cell vertex �nite volume discretization of equations (50){(51)
is straightforward, however, the source term must be taken into account.
De�ning the residuals as

R(�)j�1=2 =
(�u)j � (�u)j�1

�xj�1=2
(52)

R(�u)j�1=2 =
(p+ �u2)j � (p+ �u2)j�1

�xj�1=2
� Sx

2
(
pj
Sj

+
pj�1
Sj�1

);
(53)

R(�e)j�1=2 =
(up+ �ue)j � (up+ �ue)j�1

�xj�1=2
(54)

The �rst order update is obtained by combining the residuals as

��t
Rj+1=2�xj+1=2 +Rj�1=2�xj�1=2

�xj+1=2 +�xj�1=2
(55)

for each component of the system. The second order mesh is obtained
by using the partition of [�1; 1] obtained from the cells formed from the
midpoints of each �rst order cell, (xj�1

2
; xj+1

2
). The Jacobian matrices for

this system are given by

A =

0@ 0 1 0
1
2 ( � 3)u2 (3 � )  � 1

�ue + u3( � 1) e � 3
2( � 1)u2 u;

1A (56)

bw =
Sx
S

0@ 0 0 0
1
2( � 1)u2 (1� )u ( � 1)

0 0 0;

1A (57)

where bw is the Jacobian of the source term.
In a similar fashion for the isenthalpic system, the de�nition of the

residuals given by (52){(53) with the �rst order update given again by
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(55), is obtained. The Jacobian matrices are instead given by

A =

 
0 1

1


� (1 + )

2
u2

 + 1


u

!
; (58)

bw =
Sx
S

 
0 0

1


+

1

2
( � 1)u2

(1� )


u

!
: (59)

Numerically, the Jacobian matrix for the ux is determined at the cell
centers, that is at j � 1=2, while the Jacobian matrix of the source term is
evaluated at the nodal values j. Thus the update of the second order term
is given by

1

2
�t2

�
Aj+1=2Rj+1=2 � Aj�1=2Rj�1=2

xj+1=2 � xj�1=2
+
1

2
(bw)j(Rj+1=2 + Rj�1=2)

�
;

(60)
with the total update given by the sum of the �rst order and second order
update for the Lax{Wendro� method.

In using MC, the update is given by the �rst order term taken at
alternate time steps on the alternate meshes, followed by a second order
correction taken after the �rst order update is completed. In the case
of undamped MC there is no second order correction. The CFL number
associated with the �rst order update is denoted �1 and that associated
with the second order update as �2. References to � are taken to mean that
�1 = �2. Unless otherwise noted, a Jacobian-type second order correction
is used in MC.

5.2. Numerical studies using MC

Computational studies con�rm the predications on the stability limits
derived in Sec.4.1. The undamped MC remained stable for the Laval nozzle
problem to a CFL number of 1.97, consistent with the CFL limit of 2. If
damping is included, then as the CFL number �1 is increased, stability
considerations require that �2 be decreased: Consequently for large values
of �1, the damping, especially as the residuals become small, does emerge
as a factor contributing to the convergence rate. The comparison between
LW and MC with a Lax{Wendro� type second order update show that the
number of iterations required to obtain the same norm of the residual is
1.4 times less. Note that taking �1 > 1:48 with �2 = 0:97 was found to be
the numerical limit of stability, in agreement with the results predicted in
Sec.4.2.

In these comparisons, the second order term which is applied is of the
same form as the second order correction (60) for LW. The second order
correction is applied after one complete cycle of the �rst order update,
that is, after each vertex on each mesh had been updated. Since there are
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two such meshes in one dimension, e�ectively two �rst order updates are
performed on each mesh, followed by the second order update. The use of
computationally simpler second order corrections, such as those based on
simpler Laplacian type operators, yielded unexceptional results. This can
be interpreted in terms of the dual role which the Jacobian matrix in the
second order term plays in damping and upwinding the uxes.

Consider the numerical solution of the subsonic Laval nozzle problem
using undamped MC, that is, setting �2 = 0. Numerical computations con-
�rm that undamped MC yields a high quality, steady state solution for the
nozzle problem in which the transient spurious mode dies out as conver-
gence is approached. The Mach number plot for LW is indistinguishable
from the same plot using MC, and both agree well with the exact solution.
The di�erence between these methods, as far as the steady state solution is
concerned, is discernible only in the entropy deviation which is extremely
sensitive to small deviations in the solution.

The entropy deviation is similar using LW or undamped MC; however,
there are some high frequency oscillations present in the entropy plot using
undamped MC, which are not present using Lax{Wendro�. The magnitude
of these oscillations, however, are extremely small compared to the over-
all entropy deviation. Taking �2 > 0 in MC eliminates these oscillations,
and brings the entropy curve into agreement with that obtained using LW.
These con�rm the existence of the transient spurious mode which was pre-
dicted in Sec.4.3. Additionally it con�rms the prediction that the the two
boundary conditions in one dimension assure that no spurious modes can
exist at convergence.

The substantial di�erence between LW and undamped MC is the time
required to achieve a reasonable level of convergence. In the case of Lax{
Wendro�, to reduce the residual to less than about 10�5 requires about
800 iterations on this mesh with a CFL number taken near the maximum,
i.e. � = 0:97. For undamped MC with �1 = 1:97 and �2 = 0, this same
convergence criterion requires over 5300 iterations. The important point is
this: damping does have an important role in determining the convergence
rates.

The computational costs of MC depend on the implementation. In one
dimension on a uniformly spaced mesh, the cancellation of the central node
in the central di�erence scheme means that it su�ces to compute the ux,
and consequently the residual across the cell from j�1 to j+1. Thus there
is no ine�ciency introduced by splitting the computation of the residual.
If the residual is not recomputed in order to perform the second order
update, there is no loss in e�ciency in using split meshes. Fortunately,
the convergence rate shows no appreciable degradation in applying this
economy.

One of the advantages of MC as compared to LW for steady state so-
lutions of the Euler equations, is the existence of internal meshes which do
not require a boundary condition to be applied directly. Consequently, the
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internal meshes do not see the boundary errors which are introduced even
by a nonreective boundary treatment. A convincing demonstration of this
e�ect is made if the convergence of LW and MC using nonreective bound-
ary conditions is compared to using a boundary condition, such as pressure
at the outlet [7]. In computer simulations, comparing the e�ects of using
Riemann invariant, nonreective boundary conditions, the observed con-
vergence rates of LW and MC are the same. Using the pressure boundary
conditions, the di�erence between these two methods becomes apparent,
with the convergence of MC being about 1.5 times better than LW. MC
can be expected to converge better than LW, if the boundary conditions
are a large source of errors.

6. Conclusion

By considering a regular structured grid, a family of updates based on
the second order accurate Lax-Wendro� update can be constructed using
overlapping grids de�ned for the �rst order update. Using one dimensional
stability analysis, this produced a neutrally stable algorithm into which
a second order update is introduced to improve performance rather than
maintain stability.

Numerical studies using the one-dimensional Laval nozzle problem con-
�rm the predicted properties of the algorithm, including the stability limits
in the damped and undamped cases. The presence of transient spurious
modes is demonstrated in one dimension, and shown to be no problem in
either the damped or undamped cases. Indeed, convergence for problems
limited by the ability to correctly specify nonreective boundary conditions
show improvement in using a multicolor variant of LW.

References

[1] M. G. Hall, Cell-vertex multigrid schemes for solution of the Euler
equations, in K. W. Morton and M. J. Baines, editors, Proceedings of
the Conference on Numerical Methods for Fluid Dynamics, University
of Reading, pages 303{345, Oxford, 1985. Oxford University Press.

[2] K. W. Morton and M. F. Paisley, A �nite volume scheme with shock
�tting for the steady Euler equations, Number 87/6, Oxford University
Computing Laboratory, Oxford, July 1987.

[3] K. W. Morton andM. F. Paisley, A �nite volume scheme with shock �t-
ting for the steady Euler equations, Journal of Computational Physics
80 (1): 168{203, January 1989.

[4] M. F. Paisley, A comparison of cell centre and cell vertex schemes for
the steady Euler equtions, Number 86/1, Oxford University Comput-
ing Laboratory, Oxford, 1986.

[5] M. F. Paisley, Finite Volume Methods for the Steady Euler Equations,
Ph.D. Thesis, University of Oxford, Oxford, September 1986.



Aspects of the Finite Volume Method 29

[6] C. Rossow, Comparison of cell centered and cell vertex �nite volume
schemes, in M. Deville, editor, Proceedings of the Seventh GAMM-
Conference on Numerical Methods in Fluid Mechanics, pages 327{334,
Braunschweig, 1988. Freid. Vieweg & Sohn. Notes on Numerical Fluid
Mechanics, Vol. 20.

[7] D. H. Rudy and J. C. Strikwerda, A nonreecting outow boundary
condition for subsonic Navier-Stokes calcualtions, Journal of Compu-
tational Physics, 36: 53{70, 1980.

[8] G. A. Sod, Numerical Methods in Fluid Dynamics, Cambridge Univer-
sity Press, Cambridge, 1985.

This electronic publication and its contents are ccopyright 1992
by Ulam Quarterly. Permission is hereby granted to give away the
journal and its contents, but no one may \own" it. Any and all
�nancial interest is hereby assigned to the acknowledged authors of
individual texts. This noti�cation must accompany all distribution
of Ulam Quarterly.


