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1. A problem on ergodicity

Let I denote the interval [0;1] and In the n-dimensional cube. In
their celebrated paper [15] Oxtoby and Ulam have shown that \almost
all" measure preserving homeomorphisms of In onto itself (n � 2) are
ergodic, i.e., they do not have any measurable invariant subsets in In of
measure strictly between 0 and 1. Here \almost all" is in the sense of Baire's
category. Namely, the set of ergodic homeomorphisms is comeager relative
to the metric

d(h1; h2) = max

�
max
x2In

kh1(x)� h2(x)k;max
x2In

kh�11 (x)� h�12 (x)k
�
:

This metric is a complete separable metrization of the composition group
of all autohomeomorphisms of In; moreover it is such that the subgroup of
measure preserving homeomorphisms is topologically closed.

However, the theorem of Oxtoby and Ulam may lack physical signi�-
cance in the same sense in which the proposition that the set of sequences
(x0; x1; : : :) 2 I! for which the sequence of �rst means diverges is comea-
ger, seems to lack physical signi�cance. It is the opposite proposition which
says that this set is of measure zero (a consequence of the strong law of
large numbers) which seems to be physically signi�cant.

Recently Hunt, Sauer and Yorke [4] have introduced a concept which
raises the hope that a measure-theoretic version of the Oxtoby{Ulam theo-
rem is possible. Generalizing slightly the de�nitions of [4] we will describe
this as follows.

Recall that every �rst countable topological group has a left (or right)
invariant metrization (see [8]). By a probability measure in a complete
metric space we mean a complete Borel probability measure (see [14]).
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Let G be a complete metric group. A set X � G will be called shy if
there exists a probability measure m over G such that m(gXh) = 0 for all
g; h 2 G. (Notice that no invariance of m is required.) Such an m will be
called left and right transversal to X.

A set X � G will be called prevalent i� the complement of X is shy.
Three fundamental theorems proved in [4] can be easily generalized

to the above situation. For convenience of the reader let me state and
prove these generalizations. (We di�er from [4] by not assuming that G is
abelian.)

The �rst theorem relates the concept of shyness to the standard concept
of Haar measure zero.

Theorem 1. If G is a metric locally compact group, which has a basis of
open sets of cardinality less than the �rst real-valued measurable cardinal
and Y � G, then the following three conditions are equivalent:

(i) Y is shy;

(ii) some (or all) Haar measure of Y vanishes;

(iii) there exists a Borel probability measure on G (no invariance assumed)
which is left (or right) transversal to Y .

Proof. Condition (ii) makes sense because all Haar measures are absolutely
continuous relative to each other. We must be careful because the Haar
measures are not Borel measures in the usual sense (they are de�ned on
the �-ring generated by compact sets and completed). Nevertheless it is
easy to check that (ii) ) (i) ) (iii). It remains to show that (iii) ) (ii).
Let � be any left Haar measure on G and m be left transversal to Y as
in (iii). By Theorem 16.4 of [14], we can assume that m has a compact
support, and we de�ne

�(X) =

Z
G

m(g�1X)�(dg):

So �(Y ) = 0 and, in view of the above, it su�ces to prove that � is a Haar
measure. In fact � is left invariant since

�(hX) =

Z
G

m(g�1hX)�(dg) =

Z
G

m((h�1g)�1X)�(dg)

=

Z
G

m(k�1X)�(hdk) = �(X): �

The above theorem shows that, for all that matters, there is nothing
new about shyness or prevalence in the case of locally compact groups.
However, if G is not locally compact these concepts are new and pose some
unsolved problems:

(P0) Does the existence of a Borel probability measure left transversal
to Y imply that Y is shy?
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Left and right transversality are used in the proof of the following two
fundamental theorems (proved in [3] for the abelian case).

Theorem 2. If Y1 and Y2 are shy, then Y1 [ Y2 is also shy, i.e., shy sets
constitute an ideal.

Proof. Let � and � be the Borel probability measures over G left and right
transversal to Y1 and Y2 respectively. We de�ne

m(X) = �� �f(x; y) 2 G2 : xy 2 Xg:

We will show that m is left and right transversal to Y1 and Y2. We have

m(gY1h) =

Z
G

�(gY1hy
�1)�(dy) = 0;

and

m(gY2h) =

Z
G

�(x�1gY2h)�(dx) = 0:

Hence m(g(Y1 [ Y2)h) = 0. �
Consider the additive group B of bounded sequences of real numbers

with the usual norm k(x0; x1; : : : )k = supfjxij : i = 0; 1; 2; : : :g. It is easy
to see that each cube [�n; n]! is shy in B. Also

1S
n=0

[�n; n]! = B. Hence

the assumption that G is separable (i.e., second countable) is essential in
the next theorem.

Theorem 3. If G is separable and Y1; Y2; : : : are shy, then Y1[Y2[ � � � is
also shy, i.e., if G is separable shy sets constitute a �-ideal.

Proof. Let mj be a Borel probability measure left and right transversal to
Yj . As well known (see [14]), since G is separable, there exists a compact
set Cj with diameter � 1=2j and mj(Cj) > 0. By restricting, normal-
izing and translating mj we can assume without loss of generality that
mj(Cj) = 1 and that the unity of G belongs to Cj. Notice that if gj 2 Cj

for j = 1; 2; : : : , then the in�nite product g1g2 � � � in the sense of group
multiplication converges (by the assumption about the diameters of the
Cj 's). Let m� be the product measure of the measures mj in the product
space

Q
Cj . We de�ne

m(X) = m�f(g1; g2; : : : ) 2
Y

Cj : g1g2 � � � 2 Xg:

We will prove that m is left and right transversal to Y1[Y2[ � � � . We have

g1g2 � � � 2 hYik () gi 2 (g1 � � �gi�1)�1hYik(gi+1gi+2 � � � )�1:
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Let �iCj = C1 � � � � � Ci�1 � Ci+1 � Ci+2 � � � � and m�
i be the product

measure of m1; : : : ;mi�1;mi+1;mi+2; : : : in �iCj. Then, since mi is left
and right transversal to Yi,

m(hYik) =

Z
�iCj

mi((g1 � � �gi�1)�1hYik(gi+1gi+2 � � � )�1)m�
i (dg) = 0:

So m is left and right transversal to each Yi and hence also to Y1[Y2i[ � � �
. �

Of course Theorem 2 gives us the same feeling about the concept of
shyness which we have about the concepts of meagerness or measure zero.
But still we have a few basic questions

(P1) Suppose that Y � G is shy and that G is metric complete (as
always) and separable. Does there exist a shy G� including Y ?

(P2) Suppose that X � G is not shy and is universally measurable,
i.e., measurable relative to any Borel measure in G. Must XX�1 contain
a neighborhood of unity?

(P3) Let D be a countable subgroup everywhere dense in G and X �
G a universally measurable set which is left invariant relative to D, i.e.,
DX = X. Must X be shy or prevalent?

Now we state the main problem of this section.
(P4) Is the set of ergodic homeomorphisms (in the group H of all

measure-preserving autohomeomorphisms of In with the distance d de�ned
above) prevalent? (And the same question about the groups of measure pre-
serving di�eomorphisms and Lipschitz homeomorphisms with appropriate
complete metrizations.)

(P5) Does there exist a one-parameter subgroup L of H such that for
every g; h 2 H the sets gLh contain at most countably many non-ergodic
homeomorphisms?

Of course (P5) ) (P4), since the Lebesgue measure in L will be right
and left transversal to the set of non-ergodic homeomorphisms.

2. Problems on stability.

In [13] we have represented the states of consciousness of the brain
at times t = 0; 1; 2; : : : (the unit of time represents a small fraction of a
second) in the form of vectors xt 2 In. Here xt = (xt1; : : : ; xtn), where xtk
denotes the intensity of �ring of the kth neuron (from a certain population
of n neurons) at time t. The brain and its memory is represented by a
mapping f : In ! In such that

xt+1 = f(xt) for t = 0; 1; 2; : : : (1)

Thus xt = f t(x0), where f t is the t-th iterate of f , and x0; x1; : : : represents
the train of thoughts (and emotions). We conjectured in [13] that, what is
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observed as the freedom of choice (free will) in the process of thoughts and
decisions, corresponds to the instability of the dynamic system hIn; fi, or
the \unpredictability" of its trajectories. Let us de�ne f to be unstable i�
there exists an � > 0 such that for almost all pairs (x0; y0) 2 In � In we
have

supfkf t(x0)� f t(y0)k : t = 0; 1; : : :g � �:

Now, consider the space of all measurable functions f : In ! In under
some natural metric, e.g.,Z

In
kf1(x)� f2(x)kdx:

(P6) Are \almost all" functions f unstable? (Here the only natural
concept of \almost all" which appears available is: comeager in the sense of
Baire's category. However, we may restrict f to measurable and measure
preserving bijections of In onto itself, or, to autohomeomorphisms of In.
Conditions of smoothness could be also added. Then we get composition
groups and the notion of prevalence de�ned in Section 1 is available.)

(P7) Do there exist any measure preserving ergodic autohomeomor-
phisms of In or of the n-dimensional sphere Sn (n � 2) which are stable?
(Of course for the circle S1 or the torus (S1)n the answer is YES.)

If f is continuous then, of course, xt = f t(x0) is a continuous function
of x0. Therefore, given t, if we start to think in su�ciently similar states of
mind x0 and x00, we will reach similar conclusions f t(x0) and f t(x00). But,
if f is unstable, then this will not persist for large values of t.

Now instead of the equation (1) consider the di�erential equation

dx

dt
= f(x); (2)

where f : Rn ! Rn. Recall the theorem of Picard which tells us that, if f
is Lipschitz, i.e.,

kf(x) � f(y)k � Ckx� yk for all x; y 2 Rn;

then for every x0 2 Rn there exists a unique solution x : R ! Rn of (2)
satisfying x(0) = x0. Moreover if we restrict x to the interval [0; 1], then x
depends continuously on x0 in the topology of uniform convergence. Also,
for every �xed t, the map x0 7! x(t) is a homeomorphism. Therefore,
mutatis mutandis, we can ask questions similar to (P6) about the equation
(2).

If f is continuous and bounded (but not necessarily Lipschitz), then
by the theorem of Peano, for every x0 2 Rn, the equation (2) has solutions
x : R ! Rn with x(0) = x0. But such solutions are no longer unique.
Perhaps the necessity of choosing among such solutions can be viewed again
as a model of unpredictability or free will, but we think that the equation (1)



Some unsolved problems on the prevalence of ergodicity,
instability and algebraic independence

35

is more appropriate for modelling the work of the brain than the equation
(2) (for reasons visible in [13]), and, of course, given x0, (1) determines
a single forward trajectory. Still, let us add that there exist continuous
f : Rn ! Rn such that for all x0 2 Rn there exist solutions x(t) and ~x(t) of
(2) such that x(0) = ~x(0) = x0 but x(t) 6= ~x(t) for all t 6= 0 (see [6], [16]).
Again we can ask if this non-unicity is true for almost all f . Let X(x0)
denote the set of all solutions of (2) satisfying x(0) = x0 over the interval
0 � t � 1. It is known that the set X(x0) is connected and of contractible
shape (see [2], [12]).

3. Problems about independence

Let G be the additive group of continuous functions f : 2! ! R, where
2! denotes the nowhere dense set of Cantor in [0; 1]. The distance in G is

max
x22!

jf1(x)� f2(x)j:

We shall say that f avoids a set N � Rn i� for any n distinct points
x1; : : : ; xn 2 2! we have

(f(x1); : : : ; f(xn)) =2 N:

(P8) Is the set of all functions f which avoid a null set N prevalent
in G? [This problem is open already for the case n = 1. In this case f
avoids N i� f [2!] \ N is empty. It is also open in the case n = 2 and
N = f(x; x) : x 2 Rg. In this case f avoids N i� f is injective.] And we ask
the same questions for the subgroups of G consisting of all di�erentiable or
Lipschitz functions with appropriate complete metrizations.

Several facts similar to (P8) are known:
(a) There exist functions in G which avoid a given null set N , and even

a countable sequence of null sets Ni � Rn(i). (This is shown in [10], see
also Theorem 3.3 in [7].)

(b) If N is meager in Rn, then the set of functions which avoid N is
comeager in G. (This is shown in [11], see also [5].)

(c) Another result related to (P8) is Proposition 4 in [4].
(d) Such results were applied in [9], [10], [11] and [18] to show the

existence of perfect (i.e., nonempty, closed and dense in itself) sets of alge-
braically independent elements in various groups, �elds and general alge-
bras.

Let now M � R2 be a set whose complement has two-dimensional
Lebesgue measure zero. We shall say that a continuous function f : 2! ! R
(i.e., f 2 G) is clever i� there exists a set A � R whose complement has
Lebesgue measure zero such that f [2!]�A � M .

(P9) Is the set of clever functions prevalent in G? And we ask the same
question for subgroups of G with appropriate metrizations as in (P8).
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It is known that:

(a) Clever functions exist in G. (This was shown by H. G. Eggleston
[1].)

(b) IfM is comeager in R2 (rather than conull), then the set of all f 2 G
for which there exist a comeager set A � R such that f [2!] � A � M , is
comeager in G. (This was announced in [3].)

References

[1] H. G. Eggleston, Two measure properties of cartesian product sets,
Quart. J. Math., Oxford, Ser. (2) 5 (1954), 108{115.

[2] Philip Hartman, Ordinary Di�erential Equations, John Wiley & Sons,
1964.

[3] W. Holszty�nski, R. Laver and J. Mycielski, The existence of some
closed sets, Notices of the AMS 25 (1978), A{367.

[4] B. R. Hunt, T. Sauer and J. A. Yorke, Prevalence: A translation-
invariant \almost every" on in�nite dimensional spaces, Bulletin of
the MMS 27 (1992), 217{238.

[5] K. Kuratowski, Application of the Baire category method to the prob-
lem of independent sets, Fund. Math. 81 (1973), 65{72.

[6] M. Lavrentie�, Sur une �equation di��erentielle du premier ordre, Math.
Zeit. 23 (1925), 197{200.

[7] S. Malitz, Measures of graphs on the reals, Proc. AMS 108 (1990),
77{87.

[8] D. Montgomery and L. Zippin, Topological Transformation Groups,
Interscience Publishers, Inc., New York, 1955, Second Edition, 1964.

[9] J. Mycielski, Independent sets in topological algebras, Fund. Math. 55
(1964), 139{147.

[10] , Algebraic independence and measure, Fund. Math.
59 (1967), 165{169.

[11] , Almost every function is independent, Fund. Math.
81 (1973), 43{48.

[12] , On the set of solutions of an initial value problem,
(to appear).

[13] J. Mycielski and S. �Swierczkowski, A model of the neocortex, Advances
in Applied Math. 9 (1988), 465{480.



Some unsolved problems on the prevalence of ergodicity,
instability and algebraic independence

37

[14] J. C. Oxtoby, Measure and Category, Springer{Verlag, 1971, second
ed. 1980.

[15] J. C. Oxtoby and S. M. Ulam, Measure-preserving homomorphisms
and metrical transitivity, Annals of Math. 42 (1941), 874{920. Also
reproduced in S. Ulam: Sets, Numbers and Universes, (W. A. Beyer,
J. Mycielski and G.-C. Rota, eds.), MIT Press, 1974.

[16] A. Pli�s, One-sided non-uniqueness in ordinary di�erential equations,
Bull. Acad. Polon. Sci., Cl. III, vol. 5 (1957), 583{588.

[17] H. L. Royden, Real Analysis, Macmillan Co., 1988.

[18] S. Wagon, The Banach{Tarski Paradox, Cambridge Univ. Press, 1985.

This electronic publication and its contents are ccopyright 1992
by Ulam Quarterly. Permission is hereby granted to give away the
journal and its contents, but no one may \own" it. Any and all
�nancial interest is hereby assigned to the acknowledged authors of
individual texts. This noti�cation must accompany all distribution
of Ulam Quarterly.


