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Abstract

Due to the unprecedented pace of technology development and the
increasing exibility of manufacturing, there is a growing demand for de-
sign automation. Since design often requires creativity or even ingenuity,
it is one of the most complex tasks humans perform. Because of its com-
plexity, design automation has been limited to routine and detail design.
Recently, however, attention has been shifted towards conceptual and in-
novative design [Navichandra, 1990]. A number of techniques and methods
has been proposed, such as [Mostow, 1985], [Goel, 1989] or [Navichandra,
1991a]. Most of these approaches, however, emphasize implementational is-
sues. Design aids or speci�cation methods still lack conceptual frameworks.
The research described in this paper is concerned with the formal speci�ca-
tion of the entire design process. The proposed many-sorted �rst order logic
approach provides several advantages, such as modular decomposition, en-
capsulation, direct implementability and reusability. Its main advantage,
however, is the faithful formal representation of the design process.

First order many-sorted logic is an extension of classical �rst order
logic. In classical �rst order logic, the world is represented by a class of
models which contain homogeneous sets. A mathematical model in �rst
order logic is, therefore, a homogeneous set with a set of (total) functions
and relations. Our design environments, however, are made of di�erent
types of objects and for each type we have di�erent sets of relations and
operations. Therefore, an adequate representation of the world should con-
tain heterogeneous sets. A heterogeneous or many-sorted model is based
on a set of elements divided into subsets or sorts. Each element belongs
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to exactly one sort. Functions are relations are de�ned only on elements
belonging to a speci�c sort.

1. Introduction

McCarthy and Hayes write in [McCarthy, 1969]: \: : : intelligence has
two parts, which we shall call the epistemological and the heuristic. The
epistemological part is the representation of the world in such a form that a
solution of problems follows from the facts expressed in the representation.
The heuristic part is the mechanism that on the basis of the information
solves the problem and decides what to do." Most of the work that has been
done in design related AI research is of heuristical nature. Our aim is to
provide an epistemological approach in order to gain a better understanding
of the entire design process. Better understanding, on the other hand, will
provide a better representation of design problems. A better representation
leads to e�cient solution strategies (heuristics) for solving particular design
problems.

By the design process we understand the development of a plan how
to make a transition from a given state to a goal state. The goal state is
usually a model of a given design object. The design object can be almost
anything: a building, a ship, computer program, book pages, machine parts,
etc. However, we would like to distinguish between physical design objects,
such as furniture or computer chips, and abstract ones, such as computer
programs or chemical (drug) compositions. In the following we restrict
ourselves to physical (2 or 3 dimensional) design objects.

It seems that there is a general consensus about the main components
of the design process and in which order these components are executed.
The design process comprises the following three components, which we
will explained in detail later:

1. Description of the design parameters, constraints and goals,

2. generation of a model for the design objects, and

3. evaluation of the model.

After the evaluation of the model, constraints might be relaxed, goals rede-
�ned and the above sequence repeated, until a satisfactory solution emerges.
A solution, i.e. a model of the design object, is considered to be satisfactory
if we achieved the goals without violating the constraints. However, there
is no general rule or method for measuring the degree of goal achievement
or constraint satisfaction. (Since, instead, unspeci�c measurements are
commonly used, we also investigate modal extensions of our speci�cation
language.) If this degree is quanti�able, then we talk about optimization
problems. Most of the design problems are not optimization problems.
Moreover, even if we are confronted with optimization problems, it doesn't
mean that we can describe or solve them by well known mathematical
methods. The reason for this is twofold:



Knowledge Based Speci�cation of the Design Process
Using Many-Sorted Logic

39

a. Even the simplest optimization problems often lead to combinatorial
explosions, and

b. goals are often interdependent, i.e. the satisfaction of one goal has an
impact on the satis�ability of another goal.

If we can measure the degree of goal satisfaction, but at the same time have
interacting goals, then we talk about relative or Pareto optimal solutions.
Pareto optimal solutiions are those whose improvement regarding any of the
goals set would reduce the degree of satisfaction of another goal [Pareto,
1896].

Since optimization is a speci�c and often intractable technique for
tackling design problems, it cannot be applied widely. Current represent-
tion or problem solving methods, such as production systems, object ori-
ented or logic programming paradigms, on the other hand, are geared to-
ward the solution of speci�c design problems. Formal speci�cation becomes
a necessity once we move toward more complex and conceptual tasks. This
has been widely recognized in other areas, such as planning (see e.g. [Allen,
1984]) or database management (see e.g. [Gallaire et al., 1984]).

Classical �rst order logic has been established as a commonly used
declarative method for speci�cation. In the following, we propose the ap-
pliction of an extension of �rst order logic for speci�cation. This extension
is �rst order many-sorted logic, which { as will be shown in this paper {
is more appropriate for design speci�cation. In classical �rst order logic,
the world is represented by a class of models which contain homogeneous
sets. A mathematical model in �rst order logic is, therefore, a homogeneous
set with a set of (total) functions and relations. Our design environments,
however, are made of di�erent types of objects and for each type we have
di�erent sets of relations and operations. Therefore, an adequate represen-
tation of the world should contain heterogeneous sets. A heterogeneous or
many-sorted model is based on a set of elements divided into subsets or
sorts. Each element belongs to exactly one sort. Functions and relations
are de�ned only on elements belonging to a speci�c sort. (This concept is
similar to type declarations in programming languages.) Our speci�cation
method is based on the language of many-sorted �rst order logic. It allows
a faithful representation and �ne tuned modeling of design tasks.

The present paper is structured as follows. First, we discuss relevant
concepts. Then we introduce the speci�cation language. The concepts and
the use of the speci�cation language are illuminated by an example. Due to
space limitations, the example has been kept simple and the speci�cation
partial. The proof theoretical part is the subject of ongoing research and
will be published separately. A temporal version of many-sorted logic has
been successfully applied to knowledge based user interfact speci�cation,
see [Pasztor, 1991], [Pasztor et al., 1991a] and [Pasztor et al., 1991b]. An
application of many-sorted �rst order logic for modeling building design
was shown in [Markusz, 1981], [Markusz, 1983] and [Markusz, 1989]. This
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application has also shown how the formal speci�cation in many-sorted �rst
order logic can be implemented in Prolog.

2. Making Design Tasks Discrete

We distinguish between continuous and discrete design. Continuous
design means in�nitely many alternatives at certain stages of the design
process. An example could be the design of a wooden chair, where we can
choose almost any shape we want for the legs, the back or the arms of
the chair. Even though the design is limited by a number of constraints
(manufacturing, structural, functional, etc.), the number of solutions is
also unlimited. This, however, is not the case with the design of computer
boards containing a number of chips, transistors, resistors, switches, etc.
This, like many other design problems, such as allocating machines or de-
signing buildings made of prefabricated elements, has a �nite number of
solutions at any given stage of the design process. The latter are often re-
ferred to as con�guration problems and have a �nite solution space. There
are, however, design prolems that are not con�guration problems, but still
have �nite solution space. An example is typographical design. In this
case we have constraints, such as letter styles or sizes de�ned by profes-
sional standards, limiting the number of choices. As opposed to continuous
design, we call all design tasks with �nite solutioin space discrete.

Since humans, as well as computers, can handle only a �nite number
of alternatives, continuous design tasks will often be transformed into dis-
crete ones. This transformation, as well as further concepts, can be best
explained by way of an example. For this purpose let us look at the fol-
lowing simple task of designing the arrangement of adjustable shelf units
for accommodating books and a stereo system. The units are made of up-
rights connected by horizontal shelves. The uprights are identical and their
height is 6. The connection between the shelves and the uprights is solved
by holes or notches in the uprights at 2" distances. Appropriate connect-
ing elements are attached to the holes or notches in the uprights and to
the shelves, but the details of the attachement or joints are irrelevant for
our example. Instead of connections at regular distances, we might have
a continuous rail with sliding connections allowing arbitrary vertical ad-
justments of the shelves. This choice turns the task into a continuous one.
However, for all practical purposes, it is still a discrete one, since it is suf-
�cient to consider only a �nite number of adjustments based on the size of
the objects we want to put onto the shelves. In our example, let us assume
that we have paperback books whose average height needs a vertical shelf
distance of 8", hard covers requesting 10", stereo basic components 4" and
speakers 16". Since the greatest common divisor is 2", we really need to
consider only shelf distances which are multiples of 2" (if we start stacking
the shelves from the bottom). In other words, the designer can ignore the
rails and imagine holes in the uprights at 2" distances without loosing any
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interesting solution. In this example, transforming a continuous task into
a discrete one is easily justi�able. If, however, there is no apparent reason
for this transformation, designers still apply self-imposed constraints, such
as grids or standard sizes, making continuous tasks discrete.

3. Semantic Layers

Design is carried out in a top-down fashion at di�erent abstraction
levels. Similar to hierarchical planning [Sacerdoti, 1973], design tasks can
recursively be broken down into subtasks of manageable size. Accordingly,
the speci�cation should allow abstraction at di�erent levels. In our example
we have three components:

1. a shelf system,

2. objects to be arranged on the shelves, and

3. the room or environment we will furnish with the shelves.

The shelf system is made of units. A unit is a stack of shelves with one
upright on the left and with either another unit or an upright on the right.
The units need to be stabilized by crossbars. A crossbar attached to the
back of two neighboring uprights stabilizes at most three connected units.
The objects are books and stereo components. The books are either pa-
perback or hard cover. The stereo components are basic components, such
as ampli�er, tuner and a CD-player and two speakers. For keeping the
example simple, we consider only geometrical (size) constraints; moreover,
only two dimensional ones. This means that we don't consider e.g. weight
or esthetical constraints and we will ignore the depth of both shelves and
objects. The place we want to furnish is an empty wall.

Preliminary design is concerned with the calcualtion of storage space
and determining how many units we need. After obtaining this number,
we would like to arrange the units along the wall. Once we have arranged
the units, we shift around the objects in order to �nd an acceptable or
satisfactory arrangement of objects on the shelves.

Detail design is concerned with the placement of the shelves and the
arrangement of particular objects on any given shelf. The arrangement of
the units, the shelves and the objects on the shelves also provide assembling
information for subsequent planning tasks.

4. Design Process

The �rst step in the design process is to describe parametrs, con-
straints and goals. In our exmaple design parameters are the size and
number of the parts of the shelf system, the size and number of the objects
to be placed on the shelves and the size of the wall.
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Constraints can be classi�ed as functional, aesthetic, structural, etc.
Functional constraints restrict e.g. the location of the speakers or the place-
ment of the units in relation to doors and windows. Aesthetic constraints
might say something about dense or loose arrangements of objects, color
distribution or symmetrical vs. asymmetrical con�gurations. A structural
constaint in our example is the placement of the stabilizing crossbar. An-
other structural constraint would be prohibiting to put all heavy objects on
top shelves. (Most of these constraints cannot be applied to our example
since we excluded all but size parameters.)

A goal of the design process is a description or speci�cation of the
design object. In our case a goal would be a shelf con�guration accommo-
dating all speci�ed objects. Goals may include constraints of high priority,
i.e. constraints which have to be satis�ed as opposed to other constraints
that under circumstances may be violated. Such a high priority constraint
would be to arrange all objects using the least number of shelf parts or
having all objects on the shelves without any empty space left.

5. The Speci�cation Logic

A speci�cation logic SL consists of three components, namely

� the language of SL,

� a calculus for SL, and

� a set Ax of formulas of the language of SL, called the axioms of
the speci�cation. The axioms consist of goals, parameters and con-
straints.

The axioms form the actual speci�cation, while the �rst two items (i.e. the
language with the calculus) represent the logic of the speci�cation. The
axioms of Ax are formulated in the language of SL, while a calculus for SL
is an algorithm to derive all consequences of the speci�cation Ax.

The language of SL is a triple hFm;Md; j=i. Fm is the set of formulas
of SL and represents the syntax of the language. The pair hMd; j=i is the
semantics of SL,Md, being the class of all possible models for the language,
and j= being a relation between the formulas and the possible models called
the satisfaction relation.

To illustrate the above concepts by way of an example, suppose we
want to talk formally about the natural numbers. We will use a language
with the symbols + (as a binary operation symbol), 0 (as a constant symbol)
a.s.o. We will be able to write formulas like e.g. x+y = 0, x+y = y+x etc.
A possible model for this language is the set of all natural numbers with the
usual meaning of + and 0 being addition and zero, respectively. However,
the set of all natural numbers with the operation of taking the maximum of
two numbers as the meaning of + and the number 10 as the meaning of 0, is
also a possible model. The same way the set of all sequences of some �xed
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set of symbols with the concatenation of two sequences as the meaning of
+ and the empty sequence as the meaning of 0, is also a possible model.
(Among all these possible models, we will be interested only in those which
actually satisfy the axioms of our speci�ction Ax. For example, in this case,
if x+y = y+x were our axiom, we would really be interested only in those
possible models in which the meaning of + is a commutative operation.)

First we will concentrate only on the language part of our logic.
The axioms or the actual speci�cation is a set of formulas in Fm

representing a formal description of the subject of speci�cation, e.g. a
shelf system in our concrete case. The speci�cation is said to be correct, if
every possible model M 2 Md which satis�es the speci�cation (and some
additional constraints, like e.g. initiality in [ADJ, 1976]) is an intended
model (i.e. is acceptable to the end user). The speci�ction is complete if
every property of the class of all intended models can be derived from the
axioms with the calculus.

After experimenting with various logics for our speci�cation, we came
to the conclusion that �rst order many-sorted logic is the most suitable for
our speci�cation. The reason for this is that our main concern is the faithful
representation of the complexity of design tasks within the framework of
classical �rst order logic. In the following we give a brief de�nition of �rst
order many-sorted logic.

First we de�ne the syntax of our language, i.e. we specify the symbols
to be used and then de�ne those strings of symbols (called formulas), which
we accept as \legal".

Notation. We will use ! to denote the set of all natural numbers.

De�nition 5.1 (the nonlogical symbols of the langulage of LS). The fol-
lowing are the \ingredients" of the language of LS :

1. A nonempty set S whose elements are called sorts.

2. For every s 2 S, a set Xs = fxsi : i 2 !g of variables of sort s.

3. (S� denotes the set of all �nite length strings of elements in S. S+

denotes S� � f�g, where � denotes the string of length 0.) For every
string � 2 S+ , the set Rel� of relation symbols of arity �. (In our
shelf system design example, we will have relation symbols which are
going to be interpreted as properties of objects. So their arities are
strings of length one, e.g. PB � Relob, where ob is the sort of the
objects to be placed on the shelves and PB stands for the property
of being a paperback book.)

4. For every � 2 S� and s 2 S, the set Op�;s of operation symbols of arity
�; s, (i.e. of rank � and sort s). (In our shelf system design example,
we have operation symbols whose meaning is the projection of units of
shelves { viewed as sequences of shelves { on their component shelves.
So p1; : : : ; p36 2 Opu;sh.)

De�nition 5.2 (the set Tms of all terms of sort s). Let s 2 S. Then
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1. For every x 2 Xs, x 2 Tms;

2. Let f 2 Op�;s. Assume � = s1; : : : sn for some n 2 ! and si 2 S
(1� i�n). Let �1 : : : �n be terms of sort s1; : : : ; sn, respectively, i.e.
�1 2 Tms1 ; : : : ; �n 2 Tmsn . Then f(�1; : : : ; �n) 2 Tms.

De�nition 5.3 (The set Fms of formulas of LS).

1. Let s 2 S and �1; �2 2 Tms. Then �1 = �2 is an atomatic for-
mula of LS . Let P 2 Rel� and � = s1 : : : sn 2 S+ . Suppose
�1 2 Tms1 ; : : : ; �n 2 Tmsn . Then P (�1; : : : ; �n) is also an atomic
formula of LS . Each atomic formula is a formula.

2. Let ';  2 FmS , x 2 Xs, s 2 S. Then
:' 2 FmS ,
('^ ) 2 FmS and
9' 2 FmS .

We use the abbreviation 8x' for :9x:', (' !  ) for (:' _  ), and
(' $  ) for ((' !  )^( ! ')). with this we have de�ned the syntax of
LS . We are now going to de�ne the semantics of LS . In other words, we
are going to de�ne the meaning of formulas in possible models.

De�nition 5.4 (Possible models for LS). A possible model M for LS
consists of the following.

1. For each s 2 S, a nonempty set Ds, called domain or universe of sort
s,

2. For each relatioin symbol P 2 Rel� with � = s1 : : : sn 2 S+ , a relation
PM � Ds1 � : : :�Dsn , and

3. For each function symbol f 2 Op�;s with � = s1 : : : sn, an operation
fM:Ds1 � : : :�Dsn ! Ds.

We denote by MdS the class of all possible models for LS .

De�nition 5.5 (The satisfaction relation j=� FmS �MdS). Given a pos-
sible model M 2 MdS , an evaluation (of the variables to M) is a family
e = (es: s 2 S) of maps, where es:Xs ! Ds for each s 2 S.

Let M 2 MdS, � 2 Tms, s 2 S and let e be an evaluation. We �rst
de�ne the value e(� ) of � in M under evaluation e.

1. If � = x 2 Xs, then e(� ) = es(� ).

2. Suppose f 2 Op�;s with � = s1 : : : sn and �1 2 Tms1 ; : : : ; �n 2 Tmsn .
Then e(f(�1; : : : ; �n)) = fM(e(�1); : : : ; e(�n)).

3. Now let ' 2 FmS . We de�ne M j= '[e], i.e. \M satis�es ' under the
evaluation e (of the variables)".

(a) If ' � (�1 = �2) for some �1; �2 2 Tms and s 2 S, thenM j= '[e]
if e(�1) = e(�2).
(Note: the relation � stands for \syntactically equivalent" or
\of the form".)
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Suppose ' � P (�1; : : : ; �n) for some P 2 Rels1:::sn and �1 2
Tms1 ; : : : ; �n 2 Tmsn . Then M j= '[e] if (e(�1); : : : ; e(�n)) 2
PM.

(b) Let '; 2 FmS and x 2 Xs for some s 2 S. Then
M j= ('^ )[e] if M j= '[e] and M j=  [e],
M j= (:')[e] if it is not the case that M j= '[e],
M j= (9x')[e] if there is an element d 2 Ds, such that

M j= '[e(x=d)], where for each y 2 [s2SXs

e(x=d)(y) =

�
e(y) if y 6= x

d if y = x:

We say M j= ' (\M satis�es '"), if M j= '[e] for every evaluation e.
Given a set Ax of formulas (axioms), we say that \M satis�es Ax" or

\M is a model of Ax", i.e. M j= Ax, if M j= ' for every ' 2 Ax.
Notice that a set Ax of axioms selects from all possible models of

our language exactly those which satisfy Ax, i.e. are models of Ax (see
De�nition 5.5). For example, the goal formula says that we are looking for
a shelf system whose length does not exceed the length of the wall which
we are furnishing, and whose shelves are maximally �lled with the objects,
moreover, all objects are placed somewhere in the shelf system. This axiom
has many models with di�erent arrangements. We will need some kind of
a \recipe" to �lter out those models which exactly �t the intended design
model. (An example of such a \recipe" is ADJ's \initial algebra model" {
see e.g. [ADJ, 1976] and [Ehrig et al., 1985]).

This step completes the de�nition of the logic LS . For more details
on �rst order logic see e.g. [Monk, 1976].

6. The Speci�cation of a Shelf System

6.1 The Sorts

We will use the following notation for sorts:

ob for the sort of objects to be placed on the shevles. We will use unary
relations to distinguish between paperback and hard cover books,
stereo elements and speakers.

nat for the natural numbers. The natural numbers come with the
usual relations and operations, like <, � , +, min, max, : : : . We will
use these same symbols in formulas and assume that their interpre-
tation is the usual one.

sh for shelves. We model shelves by sets of objects. So there are two
kinds of shelves we talk about: sets of objects to model shelves and
real shelves (of a given �xed length length of sh 2 !).
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u for shelf units. Shelf units are sequences of an upright and 36
shelves. The empty set of objects is used as a shelf whenever for
some reason a shelf-upright connection (i.e. a hole or notch) is not to
be used.

sy for shelf systems. Shelf systems are sequences of 10 units. (We
assume that 10 is the largest number of units that can be built into
one system.)

6.2 The Relation and Operation Symbols

There are four relations on objects, i.e. PB, HC, ST , SP 2 Relob,
to determine the set of paperback and hard cover books, stereo elements
and speakers, respectively.

We also have constant symbols of sort ob to denote the actual objects:
aipb (i = 1; : : : ; kpb), aihc (i = 1; : : : ; khc), aist (i = 1; 2; 3), aisp (i = 1; 2),
for the kpb paperback books, the khc hard cover books, the three stereo
elements, and the two speakers, respectively.

We will also need the constants length of pb (height of pb),
length of hc (height of hc), length of st (height ofst), and length of sp
(height of sp) of sort nat, to denote the length (height) of the paperback
books, the hard cover books, the stereo elements, and the speakers, respec-
tively. We assume that all paperback books are of the same dimensions.
The same holds for the three other kind of objects.

For the uprights we use the constant symbols aiup (i = 1; : : : ; kup) 2
Op�;up. In addition, we use the constant symbol nilup 2 Op�;op, which
is used to construct an empty unit, which, in turn, is used whenever the
shelf system needs less then 10 units. So hnilup;;; : : : ; ;i is the empty unit,
while a unit



aiup; ;; : : : ; ;

�
consists only of an upright and no shelves. Such

a unit is used to end the shelf system.
For shelves we have a constant symbol length of sh 2 Op�;nat, which

denotes the length of the real shelves. We also have an operation lengthsh 2
Opsh;nat to provide the length of the \sets of objects" { shelves. We further
have the \element of" relation (symbol) 2 in Relob sh. We will use this
symbol in in�x notation. The relation symbol full 2 Relsh stands for the
property of a shelf of being maximally �lled with objects.

Since units are sequences of an upright and shelves, we have a tupling
operation symbol h iu 2 Opupsh:::sh;u and projections p0 2 Opu;up and
p1; : : : ; p36 2 Opu;sh. We agree to write



xup; xsh1 ; : : : ; x

sh
36

�
u
, rather than

h iu (xup; xsh1 ; : : : ; x
sh
36).

The function symbol lengthu 2 Opu;nat stands for the function which
provides the lengths of a unit (which is 0 or length of sh). Notice that we
assume uprights have no length.

For the shelf systems we also have a tupling operation symbol h isy 2
Opu:::u;sy and projections q1; : : : ; q10 2 Opsy;u. The notational agreement
on the use of h iu applies here, too. The length of a shelf system is given
by the function represented by lengthsy 2 Opsy;nat.



Knowledge Based Speci�cation of the Design Process
Using Many-Sorted Logic

47

The length of the wall to be furnished with the shelf system is given
by the constant symbol length of wall 2 Op�;nat.
6.3 The speci�cation: Goals, Parameters and Constraints

We agree that all the free variables in the formulas to follow henceforth
are to be read as universally quanti�ed.

� Our goal is to �nd a shelf system whose length does not exceed the
length of the wall which we are furnishing, and whose shelves are
maximally �lled with the objects. Moreover, all objects are placed
somewhere in the shelf system. Formally:

9xsy(lengthsy(xsy)� length of wall ^ ^10j=1 ^36i=1full(pi(qj(x
sy))) ^

^kpbk=1 _10j=1 _36i=1 (a
k
pb 2 pi(qj(xsy))) ^

^khck=1 _10j=1 _36i=1 (a
k
hc 2 pi(qj(xsy))) ^

^3k=1 _10j=1 _36i=1 (a
k
st 2 pi(qj(xsy))) ^

^2k=1 _10j=1 _36i=1 (a
k
sp 2 pi(qj(xsy)))):

� To make sure that shelves are indeed sets of objects, we need the
following axiom (of extensionality):

((xob 2 xsh1 ) ! (xob 2 xsh2 )) ! (xsh1 = xsh2 );

i.e. shelves are uniquely determined by their elements (i.e. their
objects).

� The constants representing a certain type of objects (e.g. paperback
books) are in the appropriate relation (e.g. PB):

^kpbi=1PB(a
i
pb) ^ ^khci=1 HC(a

i
hc) ^ ^3i=1 ST (a

i
st) ^ ^2i=1 SP (a

i
sp):

� The sum of the lengths of the elements of a shelf equals the length of
the shelf:

9xnat1 : : :9xkpb+khc+5(lengthsh(x
sh) =

�kpbX
i=1

xnati � length of pb

+

khcX
i=1

xnatkpb+i � length of hc+
3X

i=1

xnatkpb+khc+i � length of st

+
2X

i=1

xnatkpb+khc+3+i � length of sp
�
^ ^khci=1 (((a

i
pb 2 xsh)! xnati = 1) ^

(:(aipb 2 xsh)! xnati = 0) ^ ^khci=1 (((a
i
hc 2 xsh)! xnati = 1) ^

(:(aihc 2 xsh)! xnati = 0)) ^ ^3i=1 (((a
i
st 2 xsh)! xnati = 1) ^

(:(aist 2 xsh)! xnati = 0)) ^ ^2i=1 (((a
i
sp 2 xsh)! xnati = 1)) ^

(:(aisp 2 xsh)! xnati = 0))):
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� The length of the shelves as sets of objects is less than or equal to the
length of the real shelves:

lengthsh(x
sh)� length of sh :

� A shelf is full if no new object �ts on it:

full(xsh) !
length of pb > (length of sh� lengthsh(xsh)) ^
length of hc > (length of sh� lengthsh(xsh)) ^
length of st > (length of sh � lengthsh(xsh)) ^
length of sp > (length of sh � lengthsh(xsh))

� No object can be placed on di�erent shelves in any shelf system:n
:(xob 2 pi(qj(xsy)) ^ xob 2 pk(q`(xsy))): j; l = 1; : : : ; 10;

i; k = 1; : : : ; 36; j 6= ` or i 6= k
o
:

� The tupling operation h iu and the projections pi are inverses:

p0
�

xup; xsh1 ; : : : ; x

sh
36

�
u

�
= xup ^

^36i=1

�
pi
�

xup; xsh1 ; : : : ; x

sh
36

�
u

�
= xshi

�
^

(xu = hp0(xu); p1(xu); : : : ; p36(xu)iu) :
� A unit is of length length of sh if it has a non-empty shelf, and 0
otherwise:

lengthu(x
u) = maxflengthsh(pi(xu)): i = 1; : : : ; 36g :

� If a shelf in a unit contains an element which is taller than 2" (which
is the shelf distance), then appropriately many shelf connections im-
mediately above it are not to be used, i.e. are to be occupied with
the empty set of objects:n
(_kpbi=1(a

i
pb 2 pj(u))!

(pj+1(u) = ; ^ : : : ^ pminf36;j+[lengthpb=2]g(u) = ;)) ^
(_khci=1(a

i
hc 2 pj(u))!

(pj+1(u) = ; ^ : : : ^ pminf36;j+[lengthhc=2]g(u) = ;)) ^
(_3i=1(a

i
st 2 pj(u))!

(pj+1(u) = ; ^ : : : ^ pminf36;j+[lengthst=2]g(u) = ;)) ^
(_2i=1(a

i
sp 2 pj(u))!

(pj+1(u) = ; ^ : : : ^ pminf36;j+[lengthsp=2]g(u) = ;)): j = 1; : : : ; 36
o
:
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� The tupling operation h isy and the projections qi are inverses:

^10i=1

�
qi

�
hxu1 ; : : : ; xu10isy

�
= xui

�
^
�
xsy = hq1(xsy); : : : ; q10(xsy)isy

�
:

� The length of a shelf system is the sum of the lengths of its units:

lengthsy(x
sy) =

10X
i=1

lengthu(qi(x
sy)):

� The �rst unit of each system has a non-empty shelf, while the last
unit consists only of an upright:

_36i=1 (pi(q1(x
sy)) 6= ;) ^

9xup (q10(xsy) = hxup; ;; : : : ; ;iu ^xup 6= nilup) :

� Finally, we give an example for a constraint. The speakers have to be
placed at ear level, which is between the 15-th and the 20-th shelf, as
well as in di�erent units:

9xu19xu2
�_20i=15(a

1
sp 2 pi(xu1 )) ^ _20i=15 (a

2
sp 2 (xu2)) ^ x

u
1 6= xu2

�
:

7. Conclusion

Our purpose in this paper is to develop a framework for the formal
speci�cation of the design process. For this we propose to use many-sorted
extensions of classical �rst order logic. The speci�cation we gave is far from
being complete, but it shows the basic concepts.

The next step in our research is to provide a proof system. The proof
system is based either on resolution or algebraic speci�cation. The reso-
lution derives the goal from the axioms. Algebraic speci�cation generates
our models from the constants.

Design solutions satisfy the prede�ned constraints. In some cases it
is possible to attach values to the constraints and quantify the degree of
satisfaction. By this we can tell which solutions satisfy which set of con-
straints to what degree. This allows us an ordering on the set of solutions.
Also, solutions might satisfy new, so far not considered constraints. At the
same time, di�erentiation between degrees of satisfaction may lead us to
the use of modal many-sorted logics.
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