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x13 Elementary morphisms and the Theorem of M. Artin

De�nition 13.1. A morphism f :X ! Y of prescheme is called an \ele-
mentary morphism" ifX is Y -isomorphic to a prescheme of the formX 0�Z
where X 0 ! Y is a smooth projective morphism with geometrically con-
nected �bers of dimension one, and where Z is closed sub-prescheme of X 0

such that the morphism Z ! Y is �etale surjective and of constant degree.
A morphism is called polyelementary if it is a composition of elementary
morphisms. A prescheme X over a �eld k is called polyelementary (over k)
if the structural morphism X ! Spec(k) is poly-elementary.1

1cf. p. 117 Milne `�Etale Cohomology' and SGA IV
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Theorem 13.2 (M. Artin).
Let X be a geometrically irreducible prescheme over a �eld k, perfect

and in�nite, x a smooth point of X, then x admits a fundamental system
of open polyelementary neighborhoods.

Replacing X by a given neighborhood of x, it is enough to prove that
there exists an open elementary neighborhood of x in X.

Arguing by induction on the dimension n of X, we are reduced to
proving that if n > 0 then there exists an open neighborhood U of x
and an elementary morphism f :U ! V , V being a smooth scheme over k
(necessarily geometrically irreducible and of dimension n�1). The case n =
0 is trivial since X is then k-isomorphic to Spec(k) which is polyelementary
over Spec(k) (in 13.1 we do not exclude the composition of the empty family
of morphisms). We should mention it in one way or another in 13.1. The
necessity to assume that k is �rst of all perfect appears already in the case
n = 1 where we take for X 0 the projective normal canonical model of the
function �eldK ofX (cf. Chap II, Par. 7)2 the fact that k is perfect insures
that X 0 is smooth over k (since X 0 is regular anyway) and it also insures
that Z = X 0 �X with the induced reduced structure is �etale over k. Let
us now treat the general case where we can �nally assume n � 2.

We may obviously suppose that X is a�ne, therefore quasi-projective.
Then by replacing X by a projective closure we may assume that X is pro-
jective under reservation to prove that every neighborhood contains an open
neighborhood U having an elementary morphism U ! V . Also, replacing
X by its normalization (�nite over X, therefore projective),3 which does
not change it in the neighborhood of x, we may assume that X is normal;
therefore, k being perfect, geometrically normal over k.

The bene�t of this hypothesis is that the set Z of points ofX, where X
is not smooth over k is of codim � 2. Let us choose a projective immersion
i:X ! P r , as we obtain a fundamental system of neighborhoods of x in

P r by taking the sections not vanishing at x of the various O
(n)
P , n > 0,

and we conclude that every neighborhood of x contains a neighborhood of
the form X � Y , where Y is a closed subset of X containing Z, purely of
dimension (n� 1) and such tht x =2 Y .

We give Y the induced reduced structure such that (k being perfect)
the singular set of Y is of dimension � n � 2. By enlarging the previous
set Z we �nd a closed subset Z � Y of dimension � n � 2 containing the
geometrically singular set of X and of Y .

The idea of the proof is to �ber X by its intersections with linear sub-
varieties L of P of codimension (n� 1) containing a given linear subvariety
C of codimension n. To this end we will need the following:

Lemma 13.3. With the preceding notations for X , Y , Z, (X � Y � Z)
closed subschemes of P r

k of dimension n, n� 1 and � n� 2, X �Z, Y �Z

2EGA II, 7.4 [Interpr.]
3EGA II, [Interpr.]
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smooth, Z of dimension � n�2 if needed (if k is of characteristic p > 0) by
replacing the projective immersion i:X ! P r by any \multiple" � i

n (n � 2)
as in No. 9, there exists a linear subvariety L0 of P r of codimension (n�1)
and having the following virtues (nice properties)

a) L0 \ Z = � = ;
b) L0 \X is smooth of dimension 1
c) L0 \ Y is smooth of dimension 0.

(N.B. k denotes an in�nite �eld without the necessity of being perfect here.)
Let us assume this lemma and let us show how we can deduce the

existence of an open neighborhood U of x contained in X � Y and having
an elementary morphism U ! V . There exists a linear subvariety C of
L0 of codimension n in P r, i.e. of codimension 1 in L0 not meting the
�nite set (L0 \ Y ) [ fxg. Let T = X \ C so that T is a subscheme of X
�etale over k, non-empty and not contianing x and disjoint from Y . Let us
consider on the other hand the subscheme Q of Grassn�1(p) corresponding
to linear subvarieties of P r containing C such that Q is a projective space
of dimension (n � 1); in particular it is smooth over k and of dimension
(n � 1). Then L0 corresponds to a point �0 of Q(k). Let us consider, on
the other hand, (with the general notations introduced before) the inverse
image Xn�1

Q of Xn�1 by the immersion Q! Grassn�1 and also the inverse

images Yn�1
Q and Tn�1

Q which are also closed disjoint subschemes of Xn�1
Q ,

let p, q, r be the structural projections of these schemes to Q. Then by
essentially assumption p is smooth at the points lying over �0, and q is �etale
at the points lying over �0; this is also the case for r as we see that Tn�1

Q is
nothing else but T�kQ (Q isomorhism). Finally the morphism p is proper,
and taking into account that X is geometrically connected, the �bers of p
are geometrically connected (Bertini's theorem). Consequently, there exists
an open neighborhood V of Q in X such that Xn�1

Q

?? V = X 0 is proper
and smooth over V with geometrically connected �bers, and since the �ber
of �0 is nothing else but X \L0, it is of dimension 1, we may suppose that
the �bers of X 0 over V are all of dimension 1. Finally, taking V su�ciently
small, we may suppose that Yn�1

Q

?? V and Tn�1
Q

?? V are �etale over V so
that the sum prescheme of Z0 of this two (which may be identi�ed with a
closed prescheme ofX 0) is �etale over V . Consequently, putting U = X 0�Z0,
the morphism U ! V is an elementary morphism. But U is also an open
subset of X00 = Xn�1

Q � Yn�1
Q � Zn�1

Q , the inverse image of X � Y � T in

Xn�1
Q ; on the other hand, X 00 ! X � Y � T is obviously an isomorphism

(since Xn�1
Q �Tn�1

Q ! X �T is an isomorphism). Therefore U is identi�ed
to an open subset of X � Y � T , an open subset containing, furthermore,
L0 \X and a fortiori x. This is the desired neighborhood of x contained in
X � Y .

It remains only to prove Lemma 13.3. As usual, it su�ces to prove
that the generic linear subvariety of codimension (n � 1) passing through
x called L has properties a), b), c). To prove a) as well as the dimensional
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content of b) and c), this follows immediately from 2.3 (reviewed and cor-
rected in No. 12) applied (as in a reasoning already done in No. 8 ) to
the projective space of straight lines passing through x and the image of
Z in that space by a conic projection from x. [It might be useful in ad-
dition to make explicit certain results obtained by this method concerning
the linear sections by linear subvarieties subject to the condition of passing
through a �xed linear subvariety. In the text or in a separate No.] For the
smoothness in b) and c) we can because of a) replace X and Y respectively
by X � Z and Y � Z which are smooth and we are reduced to proving
this: Let f :X ! P be an unrami�ed morphism with X smooth over k and
let X 2 Pk) such that x does not belong to the image of any component
of X of dimension < m (irreducible component?) then if � is the generic
point of the subgrassmanian of GrassmP formed from linear varieties L of
codimension m passing through x, X(m) is smooth over k at least if k is
of characteristic zero and the opposite case, by replacing f by �nf , n an
integer � 2.

This is a remorse to No. 9, which itself follows from the remorse fol-
lowing No. 8: With the notations of 8.8 (supposing that X is irreducible,
which is acceptable for the problem that we are discussing) if we have
codimT � 2 or if Ysing ! T is generically �etale (condition that is automat-
ically satis�ed if k is of characteristic zero or on condition of replacing f
by �nf with n � 2, cf No. 9, then for the hyperplane H� passing through

a generic x X(1)
� is smooth of dimension (n � 1), except in the case where

we have f(X) = fxg (thus n = 0). This result accepted which liquidates
evidently the special case m = 1 of our remorse, we obtain immediately the
case of a general m, by induction on m by noticing that up to a change

of basis X(m)
� is obtained by taking an L0 of codimension (m � 1) passing

through x, L0 and H being generic independent for these properties (i.e.
in orthodox terms we place ourselves at the generic point of the scheme
of pairs (L0;H) and by taking the linear section of X by L0 \H: we may
start by taking its section by H, which is smooth by inductive assumption.)
This type of reasoning already used to generalize 2.6, for example to linear
sections of any codimension m deserves to be made explicit one good time
in general so that we may refer to it without entering every time into the
details, a bit heavy of a complete presentation.

It remains to prove the corollary announced of 8.8 in the case m = 1.
If codimT � 2, since on the other hand the hyperplane Q of �P of H, such
that x 2 H� is of codimension 1, its generic point � cannot be an element
of T and we win. [Fr]. (we are done?) In the case codimT = 1, since T
is irreducible, we cannot have � 2 T unless Q = T , i.e. in geometric terms
(supposing k algebraically closed which is acceptable for every z 2 X the
tangent space to X at z (or rather its image by f 0z passes through x. Let
us prove that this cannot happen unless Xsing ! T is generically �etale, i.e.
if we are under the condition of 8.8, except in the case f(x) = fxg thus X
of dimension zero. Indeed 8.7 c) (which expresses essentially the symmetry



22 Joseph Blass, Piotr Blass and Stan Klasa

in the relation between X and its \dual" T ) implies that for almost every
point z 2 X(k), f(z) is orthogonal to the tangent space to T at a certain
point, therefore (since T = Q) orthogonal to Q, where f(z) = x hence
f(X) = fxg. This puts an end to the proof of our remorses and thus of
13.2. N.B. The reasoning does not work if we replace x by a linear sub-
variety X of dim > 0, and if we subject H to passing through C; indeed,
there is no reason to suppose (taking for example dim C = r�2 the greatest
possible for which H can still e�ectively vary) that T contains the straight
line C0 taking for example a non-singular quadric in P in any characteristic.
But it is possible that such phenomena cannot happen anymore for �nf ,
n � 2; we could pose the questions as a remark in No. 9.

Remark 13.4.
a) We have already observed that the hypothesis that k should be perfect

is essential for the validity of 13.2. On the contrary, it is plausible
that the hypothesis k is in�nite is never redundant. We did not try
an ad hoc reasoning for the case where k is �nite and we only note
that in this case the application of 13.2 to the algebraic closure of k
and usual arguments show that we may �nd a �nite extension k0 of k
such that for the point of Xk0 over x there exist open polyelementary
neighborhoods relative to k0.

b) If in 13.2 we abandon the hypothesis that X is geometrically irre-
ducible, the conclusion obviously does not remain the same (since an
algebraic poly-elementary scheme is geometrically irreducible!). The
conclusion holds, however, in a weaker form which is obtained by
omitting in de�nition 13.1 the word \connected" as this is shown by
the proof that we have given.

c) (To be possibly included in the statement of 13.2) With the nota-
tions of 13.2, let � be a �nite subset of X of smooth points of X
and let us suppose that � is contained in an a�ne open subset of
X. Then � possesses a fundamental system of open polyelementary
neighborhoods. Evidently we may suppose that � consists of closed
points. The proof is essentially the same except that we specify 13.3
in slightly di�erent form: there exists a linear subvariety C of P r of
codimension n, not meeting �[Y and such that for every xi 2 �(�k),
the linear subvariety of Li of codimension (n � 1) generated by C at
xi has the properties a), b), c) of 13.3. To verify this point we note
that it su�ces to verify that the generic C has the above-mentioned
properties since for such a variety each Li is generic among the L of
codimension n passing through xi so that we can apply 13.3 in the
initial form (or at least in the form that we have proven which was
[Fr]: every L0 \su�ciently general" passing through x has properties
a), b), c).

d) By proceeding as explained in 7.1, we may give variants of 13.2 in the
case where we replace the base �eld k by a general base Y prescheme.
Let us remark the following (without proof): Let f :X ! Y be a at
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projective morphism with geometrically irreducible and (R2) �bers,
S0 a subscheme of X �nite over S, x 2 S, suppose that for every
x 2 S0 over s, Xs is smooth over k(s) at x. Then there exists an open
neighborhood U of s and an open neighborhood V of S0 j U in X j U
such that V ! U is poly-elementary. If Y is a closed subscheme of
X not meeting S0 and such that the set Z of points where Y is not
smooth over S veri�es dim Zs � dim Xs�2; then we may above take
V contained in X � Y .

e) One of the reasons why 13.2 is interesting is the topological structure
particularly simple of the elementary algebraic schemes U . For exam-
ple if the base �eld is the �eld of complex numbers and if Uan denotes
the analytic space associated to U then the homotopy groups �i(Uan)
are zero for i 6= 1 and �1 is a successive extension of free groups.
Thus Uan is a \space K(�1; 1)", classifying for �1, more precisely its
universal covering space is homeomorphic to Cn and a fortiori is con-
tractible and this covering is a \universal principal �bration" with
group �1.
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