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The simplest type of integral extension of a unique factorization do-
main B is obtained by adjoining to B an n-th root of one of its elements;
that is, by forming the ring Bn = B[z]=(zn � g), where n 2 Z+ and g 2 B.
When n = 1, Bn = B. When n � 2 it is natural to ask for what g 2 B
will unique factorization be preserved? The case where B is a polynomial
ring over an algebraically closed �eld k immediately comes to mind. In the
one variable case we have a de�nitive answer: Bn is factorial if and only if
g 2 B = k[x] is linear; for if deg(g) � 2 then g factors completely in B as a
product of linear factors and in Bn g will have two distinct factorizations.

With more variables the issue becomes more cloudy. This paper con-
centrates on the two variable case so that our principal question is

0.1. Question. For what g 2 k[x; y], will Bn = k[x; y; z]=(zn � g) be a
unique factorization domain?

The one variable case suggests that the answer may be that if g is
irreducible in k[x; y] then Bn will be factorial, but the following example
shows that this is not enough.

0.2. Example. Assume char(k) = p 6= 0 and let g = xy + xp+1 + yp+1.
Then Bp is not factorial since (z + xy)p = (x + yp+1)(y + xp+1) is a non-
unique factorization in Bp.
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There are similar examples in characteristic 0.
Perhaps g in (0.2) is not irreducible enough; what if g is in some sense

very irreducible? A generic g is about as irreducible as we can think of.

We say that g =
X

�ijx
iyj 2 k[x; y] of degree d is generic if the set of

coe�cients f�ij : 0 � i + j � dg is algebraically independent over the
prime sub�eld of k. Thus we obtain the following conjecture.

0.3. Conjecture. If g 2 k[x; y] is generic and deg(g) � 4, then for all
n 2 Z+, Bn is a unique factorization domain.

This conjecture is partly motivated by the classical result of Max
Noether [4], which was extended to all characteristics by Deligne [2]: a
generic surface of degree � 4 in projective 3-space has in�nite cyclic divisor
class group (see [5, pp. 130{131] for a de�nition of divisor class group).
When R is a Krull domain, R is factorial if and only if the divisor class
group of SpecR is 0.

For each n 2 Z+ let Xn = SpecBn � A3
k and denote the divisor class

group of Xn by Cl(Xn). Then (0.3) becomes

0.4. Conjecture. If g is generic and deg(g) � 4, then Cl(Xn) = 0 for all
n 2 Z+

Note that Cl(Xn) = 0 if and only if every curve on Xn is a complete
intersection.

The following results summarize the progress we've made so far on
(0.4) when char(k) = p > 2. Here and throughout the rest of the paper
g 2 k[x; y] is generic of degree � 4.

0.5. Theorem. If m 2 Z+ such that gcd(p;m) = 1 and Cl(Xm) = 0, then
Cl(Xprm) = 0 for all r 2 Z+.
0.6. Corollary. If n = ps for some s 2 Z+, then Cl(Xn) = 0

0.7. Corollary. Cl(Xn) = 0 for all n if and only if Cl(Xn) = 0 for all n
relatively prime to p.

(0.7) is an obvious corollary of (0.5) and (0.6) is a consequence of
(0.5) and the fact that B1

�= k[x; y]. In the next section we outline the
proof of (0.5). We simply mention here that when p = 2, Cl(X2s) �= Z=2Z
for all s 2 Z+ (see [7, pp. 359{360]). This leads us to reformulate (0.4).

0.8. Conjecture. If g is generic of degree � 4, then Cl(Xn) = 0 for all n
if char(k) 6= 2.

1. Radical Descent

If A is a Krull domain of characteristic p 6= 0 and � : A ! A is a
derivation with kernel B, then B is a Krull domain and A is integral over
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B. If the degree of the �eld of fractions of A over the �eld of fractions of
B is p 6= 0 and �(A) is not contained in any height one prime of A then

(1.1) (a) there is a group homomorphism � : Cl(SpecB)! Cl(SpecA)
such that ker � is isomorphic to the quotient L=L0 of the additive groups
L = ft�1�t : t and t�1�t 2 Ag and L0 = fu�1�u : u 2 A�g;

(b) there is a b 2 B such that �p = b�;

(c) an element x of A belongs to L if and only if

�p�1x� bx+ xp = 0:

(See [8, pp. 62{64].)

1.2. Proposition. Let D be the derivation on k(x; y) de�ned by D =

gy
@

@x
� gx

@

@y
. Then

(a) kerD \ k[x; y] = k[xp; yp; g] �= Bp;

(b) Cl(SpecBp) is isomorphic to L0 = ft�1Dt : t and t�1Dt 2
k[x; y]g;

(c) there exists a0 2 k[xp; yp; g] such that Dp = a0D and deg(a0) �
(p � 1)(deg(g) � 2). ([6, pp. 616{622])

1.3. Discussion. Let S = fQ 2 k2 : gx(Q) = gy(Q) = 0g. The
cardinality of S is (deg(g) � 1)2 when deg(g) 6= 0 (mod p) and (deg(g))2 �
3deg(g) + 3 otherwise ([6, pp. 287{288]). A simple application of Bezout's
theorem yields that if t 2 k[x; y], then the number of Q 2 S such that
t(Q) = 0 can not exceed deg(t)(deg(g) � 1). In particular, if t(Q) = 0 for
all Q 2 S then deg(t) > deg(g) � 2 or t = 0.

1.4. Notation. The derivation D in (1.2) extends to a derivation on
k(x; y; z) with D(z) = 0. Since D(zn � g) = 0, D induces a derivation on
Bn which we denote by Dn. Let Ln = fu�1Dnu : u and u�1Dnu 2 Bng
and L0n = fu�1Dnu : u 2 B�

ng. Then Bnp is isomorphic to kerDn \ Bn

and by (1.1) there is a group homomorphism �n : Cl(Xnp)! Cl(Xn) with
ker (�n) �= Ln=L0n.

1.5. Proposition. Let t =
n�1X
i=0

tiz
i 2 Bn, where ti 2 k[x; y], 0 � i � n�1.

For each i let J(i) = fj : 0 � j < n and pj � i (modn)g. Then t 2 Ln if
and only if for each i, 0 � i < n,

Dp�1ti � a0ti = �
X

j2J(i)
tpjg

(pj�i)=n;

where a0 is as in (1.2(c)).

Proof. By (1.1), t 2 Ln if and only if Dp�1
n t � a0t = �tp, which holds if

and only if
X
i

�
Dp�1ti � a0ti

�
zi = �

X
i

tpi z
ip. Since 1; z; : : : ; zn�1, is a
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basis for the �eld of fractions of Bn over k(x; y) and since zn = g in Bn, we
obtain the conclusion by comparing powers of z on both sides of the above
equation. �

1.6. Lemma. Let t =
n�1X
i=0

tiz
i 2 Bn, where ti 2 k[x; y], 0 � i < n. If

t 2 Ln, then deg(ti) � deg(g) � 2 for each i.

Proof. We consider the case deg(g) 6= 0 (mod p); the other case is similar.
Let r be such that deg(tr) � deg(ti) for each i. We have pr = nq + s for
q; s 2 Z with q � 0, 0 � s < n. By (1.5), Dp�1ts � a0ts = �tprgq. By (1.2),
deg(a0) � (p� 1)(deg(g) � 2). A simple induction shows that

deg
�
Dp�1ts

� � deg(ts) + (p� 1)(deg(g) � 2):

Thus

p deg(tr) � deg
�
Dp�1ts � a0ts

� � deg(ts) + (p� 1)(deg(g) � 2) �

� deg(tr) + (p� 1)(deg(g) � 2):

Hence deg(tr) � deg(g) � 2. �
1.7. Theorem. Let H = gxxgyy � g2xy, the hessian of g. For each Q 2 S
let
p
H(Q) denote a �xed root of the equation T 2 = H(Q). Then a0(Q) =�p

H(Q)
�p�1

for each Q 2 S. ([3, Theorem 1.5])

1.8. Lemma. Suppose n = pm, where m;n; p 2 Z+. Then the composition

Bm
�=�! k[x; y; zp]=(zn � g) ,! Bn maps Lm isomorphically onto Ln.

Proof. Let t =
n�1X
i=0

tiz
i 2 Ln where ti 2 k[x; y]. By (1.5), gcd(i; p) =

1 implies Dp�1ti = a0ti. Then for each Q 2 S, 0 =
�
Dp�1ti

�
(Q) =

a0(Q)ti(Q). For a generic g, H(Q) 6= 0 for all Q 2 S. By (1.3), (1.6) and
(1.7), ti = 0 whenever gcd(i; p) = 1. Thus t 2 k[x; y; zp]=(zn � g) �= Bm.
Therefore the isomorphism Bm ! k[x; y; zp]=(zn � g) maps Lm onto Ln.�
1.9. Discussion. Assume m 2 Z+ and gcd(p;m) = 1. We need to study

the action of G = Gal(k;Fp(�ij)) on S (recall g =
X

�ijx
iyj). Let N de-

note the cardinality of S. Let Sm = f(�;�; 
) 2 k3 : (�; �) 2 S and 
m =
g(�; �)g. Since g is generic g(Q) 6= 0 for all Q 2 S. Then Sm consists of
mN points which we can list as Qij, 1 � i � N , 1 � j � m, in such a way
that if Qij = (�; �; 
), then (�; �) = Qi.

Let ! be a primitive m-th root of unity in k and � the k(x; y)-auto-
morphism on k(x; y; z) de�ned by �(z) = !z. Then � induces an automor-
phism on Bm and let T : Bm ! k[x; y] denote the trace map. Since each



Some Questions on Unique Factorization 15

Qij 2 Xm we may de�ne t(Qij) for t 2 Bm by evaluating any preimage of
t in k[x; y; z] at Qij. Observe that if i is �xed and t(Qij) = 0 for each j,
then [T (t)](Qij) = 0 for each j, which yields [T (t)](Qi) = 0.

Now t =
X
r

trz
r for unique tr 2 k[x; y], 0 � r < m. If s is a non nega-

tive integer less thanm, then t(Qij) = 0 for each j implies (zm�st)(Qij) = 0
for each j, which we just saw implies

0 = [T (zm�st)](Qi) = (mzmts) (Qi) = mg(Qi)ts(Qi);

and hence ts(Qi) = 0 for each s. We summarize this in a lemma.

1.10. Lemma. Assume gcd(p;m) = 1 and t =
m�1X
r=0

trz
r 2 Bm. If for a

�xed i, t(Qij) = 0 for each j, then tr(Qi) = 0 for each r.

1.11. Lemma. Assume gcd(p;m) = 1. For each t 2 Lm and Qij 2 Sm
there exists rij 2 Fp such that t(Qij) = rij

p
H(Qi). Furthermore, the map

� : Lm ! L
i;j
Fp �

p
H(Qij) de�ned by �(t) = (t(Qij)) is an injection of

additive groups.

Proof. Given t 2 Lm, Dp�1
m t� a0t = �tp by (1.1). Evaluate both sides of

this equality at Qij we obtain a0(Qi)t(Qij) = tp(Qij). By (1.7) we obtain
the �rst assertion. The second one follows by (1.3), (1.6) and (1.10). �
1.12. Theorem. Let G = Gal(k;Fp(�ij)). Then G acts on S as the full
symmetric group. Furthermore, for each pair Q0; Q00 2 S, there exists a
� 2 G such that � acts as the identity on S and

�(
p
H(Q)) =

� �pH(Q); Q = Q0; Q00p
H(Q); otherwise:

([1, p. 297] and [3, p. 354])

1.13. Lemma. Assume gcd(p;m) = 1. Then Lm = 0.

Proof. Let t 2 Lm and suppose t 6= 0. Assume �(t) =
�
rij
p
H(Qi)

�
.

Given � 2 G, �(t) 2 Lm and the action of � on t is compatible with the
action of � on �(t). By (1.12), there are �0; �00 2 G such that

�0(
p
H(Q)) =

� �pH(Qi)); i = 1; 2p
H(Qi); otherwise;

�00(
p
H(Q)) =

� �pH(Qi)); i = 1; 3p
H(Qi); otherwise:
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Then t̂ = t � �0(t) � �00(t) + �00�0(t) 2 Lm and has the property that
t̂(Qij) = 0 for all i � 2 and 1 � j � m. Note also that t̂ 6= 0 since the

�rst coordinate of �(t̂) = 4r11
p
H(Q1). t̂ =

m�1X
s=0

tsz
s, where ts 2 k[x; y],

0 � s < m. By (1.10) ts(Qi) = 0 for each s and i � 2. If deg(g) 6= 0 (mod p),
S has (deg(g) � 1)2 points. By (1.3) and (1.6) we get each ts = 0, a
contradiction. The case where p divides deg(g) is slightly more complicated
but very similar and we omit the details. �
1.14. Theorem. If gcd(p;m) = 1, then Cl(Xprm) injects into Cl(Xpr�1m)
for all r 2 Z+. In particular, Cl(Xm) = 0 implies Cl(Xprm) = 0 for all
r 2 Z+.
Proof. Use (1.4), (1.8) and (1.13).
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