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Problem #1

Paul Erd}os

Geometry

Anning and I (Bull. Amer. Math. Soc. 1945) proved that ifX1; X2; : : :
is an in�nite set of points in the plane and all distances d(X1;
X2) are integers, then the points are on a line. When I told this theo-
rem to Stan he asked: Let X1; X2 : : : be a dense set in the plane. Prove
that not all the distances d(X1; X2) can be rational. This is probably dif-
�cult and is still open. Perhaps, in fact, there is a dense subset where all
distances between pairs of points of the subset are irrational.

Problem #2

Paul Erd}os

Let X1; X2; : : : ; Xn be n points in the plane. Assume that if two
distances d(X1; Xj) di�er, they di�er by at least one. Is it then true
that the diameter D(X1; X2; : : : ; Xn) is > cn? And perhaps for n > n0
D(X1; : : : ; Xn)�n�1. n�1 is of course best possible (if true) if the points
are 0; 1; : : : ; n� 1. In three dimensional space

D(X1; : : : ; Xn) > cn

is certainly not true. Perhaps D(X1; : : : ; Xn) > cn2=3 holds.
Assume next that all the distances d(X1; Xj) are di�erent and

(d(Xi; Xj) � d(Xk; X`))� 1

i.e., two distances di�er by at least one. Then of course the diameter
D(X1; : : : ; Xn) is �

�
n
2

�
. I think that perhaps in any dimension

D(X1; : : : ; Xn) > (1 + �(1))n2

I can only prove this if the points are on a line, i.e., in dimension one.
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Problem #3

Paul Erd}os

Number Theory

Let P (n) be the greatest prime factor of n. Is it true that the density
of integers with P (n) > P (n+1) is 1

2? The answer is no doubt a�rmative,
but this seems very hard. An old result of mine states that the density
of integers n for which d(n + 1) > d(n) is 1

2 , where d(n) is the number of
divisors of n.

Problem #4

Paul Erd}os

Is it true that for every k you can �nd k consecutive integers satisfying
P (n) < P (n+1) < � � � < P (n+k�1)? Again, the answer surely is yes, but
I cannot prove it. I o�er $100.00 for a proof. It is easy to prove that there
are k consecutive integers for which d(n) < d(n+ 1) < � � �< d(n+ k � 1).

Problem #5

Paul Erd}os

Old problem of mine: Is it true that if a1 < a2 < : : : is an in�nite
sequence of integers for which X 1

ai
=1 (1)

then for eery k the a's contain an arithmetic progression of k terms?
($3,000.00 for a proof or disproof.) If true, then for every k there are k
primes which form an arithmetic progression. It is not even known that
(1) implies that there are three a's in an arithmetic progression, i.e., that
a1 + aj = 2ak is solvable.
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Problem #6

Peter D. Lax
Courant Institute of Mathematical Sciences

New York University

Show or disprove that, if S is a compact set in a locally convex topo-
logical space, then its closed convex hull is compact.
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