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Abstract

We show there exists a continuous compactly supported function '
de�ned on the reals satsifying

'(x) = c0'(2x) + c1'(2x� 1) + c2'(2x� 2)

if and only if c1 = 1, c0 + c2 = 1, and jc0j; jc2j < 1. The functions ' are
examples of scaling functions from the theory of wavelets.

x1. Introduction
In the last decade, wavelets have emerged as an exciting new devel-

opment in mathematics which has signi�cant applications in many areas
of science and engineering. Their development may be viewed as the cul-
mination of work from the areas of harmonic analysis, physics, and signal
processing in engineering. This has resulted in a virtual explosion of interest
in wavelet analysis among scientists from many di�erent areas.

As is well{known, the tool of multiresolution analysis, originally de-
veloped from ideas in image analysis (cf. [3]), provides a simple method of
constructing wavelets from scaling functions satisfying a two{scale relation
of the form

'(x) =
1X

k=�1
ck'(2x� k)

which satisfy the partition of unity propertyX
k2Z

'(x� k) = constant 6= 0:
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The two{scale relation generating the Meyer scaling function, con-
tains in�nitely many non{zero terms. However, the classical Haar scaling
function, the B{spline scaling functions, and the Daubechies scaling func-
tions are determined by symbols having �nitely many non{zero terms, a
property desirable for computations. Here we consider the scaling func-
tions generated by two{scale relations of length three.

As stated in [1], the Haar scaling function is the unique solution of
the two{term two{scale relation

'(x) = c0'(2x) + c1'(2x� 1):

However, it seems to be thought that the only continuous (on the entire
real line) solution of the three{term two{scale relation

'(x) = c0'(2x) + c1'(2x� 1) + c2'(2x� 2)

is the tent function, for which c0 = c2 =
1
2 , and c1 = 1. The next section

contains a proof of

1.1 Main Theorem. There exists a continuous, compactly supported func-
tion ', satisfying

'(x) = c0'(2x) + c1'(2x� 1) + c2'(2x� 2)

if and only if

c1 = 1; c0 + c2 = 1; 0 < jc0j; jc2j < 1:

Moreover, ' is H�older continuous with exponent � log2max(jc0j; jc2j).
It is interesting to note that the coe�cients in the scaling relation are

allowed to be complex numbers. In section three we discuss some additional
related results.

x2. Continuous three term scaling functions

We begin by establishing the necessity of the conditions in Theorem
1.1, even without the partition of unity hypothesis.

2.1 Lemma. Let complex numbers c0; c1; c2 be given. Suppose ' is a con-
tinuous compactly supported function ' which is not identically zero. If '
satis�es

'(x) = c0'(2x) + c1'(2x� 1) + c2'(2x� 2); (1)

then the support of ' is a subset of the interval [0; 2], c1 = 1, '(1) 6= 0,
c0 + c2 = 1, and jc0j; jc2j < 1.

Proof. Let a denote the left end point of the support of '. If a < 0, then
for all � small enough 2(a + �) < a. In particular, both 2(a + �) � 2 and
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2(a + �) � 1 are strictly less than a. With x = a+ �, (1) implies '(x) = 0.
This contadicts the de�nition of a; and therefore a� 0. Similarly, the right
end point of the support of ' is at most 2.

To show '(1) 6= 0 we argue by contradiction. Accordingly, suppose
'(0) = 0. We will show, by induction on n, that '(j2�n) = 0 for all n 2 N
and j 2 Z. Since the support of ' is the interval [0; 2] and '(0) = 0, this is
true for n = 0. If '(j2�n) = 0 for all j 2 Z (with n �xed), then, using the
induction hypothesis,

'( j
2n+1 ) =c0'(

j
2n ) + c1'(

j�2n
2n ) + c2'(

j�2n�1
2n )

=0:

Thus, ' is zero on the dyadic rationals and therefore, by continuity, iden-
tically zero. This contradiction implies '(1) 6= 0. Now, with x = 1, the
relation (1) gives '(1) = c1'(1): Whence c1 = 1.

Using induction, it is straightforward to show that

'(
1

2n
) = cn2 and

'(2� 1

2n
) = cn0 :

(2)

Consequently, since ' is continuous at 0 and 2 and since '(0) = '(2) = 0,
jc0j; jc2j < 1.

Using (2) and induction, it is possible to verify the formula

'(1 +
1

2n
) = c0[1 + c2 + : : : cn�12 ]:

From (2) and the continuity of ' at 0, it follows that c0
P1

m=0 c
m
2 = 1; i.e.,

c0 + c2 = 1. This completes the proof. �
The tent function T , de�ned by

T (x) =

8><>:
x for 0�x�1
2� x for 1�x�2
0 otherwise

is an example of a function satisfying (1) with c0 = c2 = 1
2 and c1 = 1.

A remark in [1], page 129, suggests that there are no other continuous
solutions of (1) with compact support.

Fix a complex number � such that both j�j and j1� �j are strictly
less than 1. In the remainder of this section, we construct a continuous
function supported in [0; 2] such that

'(x) = �'(2x) + '(2x� 1) + (1� �)'(2x� 2): (3)
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The �rst step is to construct a function ' on the dyadic rationals which
satis�es (3) on the dyadic rationals.

For n 2 N, let
An =

�
j

2n
: j 2 Z

�
and let A denote the dyadic rationals, viewed as the union of the An. ' is
de�ned by recursion on the sets An. De�ne F0 on A0 by

F0(j) =

�
1 if j = 1

0 if j 6= 1:

Assuming Fn has been de�ned on An, de�ne Fn+1 on An+1 by

Fn+1(
j

2n+1
) = �Fn(

j
2n
) + Fn(

j�2n
2n

) + (1� �)Fn(
j�2n+1
2n

): (4)

It is straightforward to verify, arguing by induction, that F (j2�n) = 0
if j2�n =2 (0; 2). Moreover, we claim that Fn+1 extends Fn; i.e., Fn+1
restricted to An is Fn. This is immediate when n = 0. Now suppose it is
true for n. We have, using, in order, the de�nition of Fn+2, the induction
hypothesis, and the de�nition of Fn+1,

Fn+2(
j

2n+1 ) =F (
2j
2n+2 )

=�Fn+1(
j
2n ) + Fn+1(

j�2n
2n ) + (1� �)Fn+1(

j�2n+1
2n )

=�Fn(
j
2n ) + Fn(

j�2n
2n ) + (1� �)Fn(

j�2n+1
2n )

=Fn+1(
j

2n+1 ):

This shows that the function ' on A given by '(j2�n) = Fn(j2�n) is well
de�ned and satis�es the scaling relation (3).

We will show that ' is uniformly continuous, in fact H�older continuous
on A, and hence extends to be continuous on the reals. The following lemma
expresses a crucial symmetry condition satis�ed by ', namely that on the
dyadic rationals ' satis�es the partition of unity property.

2.2 Lemma. The function ' has the following important property. For
each natural number n and for each integer j such that 2n � j � 2n+1 � 1,

'( j
2n )� '( j+12n ) = '( j+12n � 1)� '( j

2n � 1): (5)

Proof. We argue by induction on n. The case n = 0 is easy to verify.
Suppose (5) holds for a �xed n and let 2n+1 � j � 2n+2 � 1 be given. From
the scaling relation (3) we have

'( j
2n+1 )� '( j+1

2n+1 ) = (1� �)['( j
2n � 2)� '( j+12n � 2)]

+ ['( j
2n � 1)� '( j+12n � 1)]

(6)
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We consider two cases. In the case 2n+1 � j � 3(2n) � 1, the induction
hypothesis, applied to the last term of (6) and to j � 2n, obtains

'( j
2n+1

)� '( j+1
2n+1

) = �['( j+1
2n

� 2)� '( j
2n

� 2)]: (7)

On the other hand, using the scaling relation (3), the support of ' is in the
interval [0; 2], and j+1

2n+1 � 1� 1
2 ,

'( j+1
2n+1 � 1)� '( j

2n+1 � 1) = �('( j+12n � 2)� '( j
2n � 2)): (8)

Comparing (7) and (8) shows that (5) is valid for n + 1 provided 2n+1 �
j � 3(2n)� 1. In the case 3(2n)� j � 2n+2� 1, the scaling relation (3) gives

'( j
2n+1

) � '( j+1
2n+1

) = (1� �)['( j
2n

� 2)� '( j+1
2n

� 2)]; (9)

since, in this case, j
2n+1 �

3
2 . On the other hand, again from (3),

'( j
2n+1 � 1)� '( j+1

2n+1 � 1) = �['( j
2n � 2) � '( j+12n � 2)]

+ ['( j
2n � 3)� '( j+12n � 3)]:

(10)

Now, from the induction hypothesis, the last term in (10) is given by

'( j+12n � 2)� '( j
2n � 2):

Therefore, (10) becomes,

'( j
2n+1 � 1)� '( j+1

2n+1 � 1) = (1� �)['( j+12n � 2)� '( j
2n � 2)]: (11)

Comparing (11) and (9) �nishes the proof of the lemma. �
The following theorem expresses the H�older continuity of ' on the

dyadic rationals.

2.3 Theorem. De�ne  by 2� = maxfj�j; j1 � �jg. For n 2 N and
2n � j � j + k � 2n+1,

j'( j
2n )� '( j+k2n )j� (2 � 1)�1( k

2n )
 : (12)

In particular, ' extends to the reals as a H�older continuous function with
exponent  which, by continuity, satis�es the scaling relation (3).

Proof. We argue, as usual, by induction on n to �rst establish the Theorem
when k = 1. The case n = 0 is straightforward to verify. Accordingly we
assume (12) holds for a �xed n, k = 1, and 2n � j � 2n+1� 1, and let j such
that 2n+1 � j � 2n+2 � 1 be given. By the scaling relation (3)

'( j
2n+1 )� '( j+1

2n+1 ) = ['( j
2n � 1)� '( j+12n � 1)]

+ (1� �)['( j
2n � 2) � '( j+12n � 2)]:

(13)
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If 2n+1 � j � 3(2n)�1, then an application of Lemma 2.2 to the second term
in (13) obtains

j'( j
2n+1 ) � '( j+1

2n+1 )j = j�jj'( j
2n � 1)� '( j+12n � 1)j (14)

If 3(2n)� j �2n+1 � 1, then the �rst term on the right hand side of (13)
vanishes and we obtain,

j'( j
2n+1 )� '( j+1

2n+1 )j = j1� �jj'( j
2n � 2)� '( j+12n � 2)j (15)

With C = maxfj�j; j1� �jg and

�n = maxfj'( j
2n
)� '( j+1

2n
)j : 2n � j � 2n+1 � 1g;

(14) and (15) imply
�n+1 �C�n: (16)

Thus, �n �Cn for all natural numbers n.
By a dyadic interval, we mean an interval of the form ( j

2n ;
j+1
2n ]. Given

natural numbers n; j; k such that 2n � j < j + k � 2n+1, let J0 denote the
interval J0 = ( j

2n ;
j+k
2n ]. Let J1 denote the largest dyadic interval contained

in J0. Let J2 denote the largest dyadic interval disjoint from J1 and con-
tained in J0. In this way we obtain dyadic intervals fJmg`m=1 which we
denote

Jm = (
jm
2nm

;
jm + 1

2nm
];

such that
J0 = [Jm;

and
1

2n1
+

1

2n2
+ :::+

1

2n`
=

k

2n
: (17)

We have

'( j
2n ) � '( j+k2n ) =

X̀
m=1

'( jm
2nm ) � '( jm+1

2nm ): (18)

Applying (16) to (18) obtains

j'( j
2n ) � '( j+k2n )j�

X̀
m=1

(
1

2nm
)

� (
1

2n1
)(2 � 1)�1

� (2 � 1)�1( k
2n )

 ;

since 1
2n1 �

k
2n . The theorem follows. �
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x3. Additional Results
If ' has L2(R) norm 1 and satis�es and the scaling relation (3) for

some � complex such that both j�j and j1��j are strictly less than 1, then
it follows from the general theory (and can be veri�ed directly) thatX

'(x� k) = '(1)

for all x. Moreover, it is straightforward to compute the L2(R) inner prod-
ucts of translates of ' as

< '(x�m); '(x� n) >=

8>>><>>>:
1 if m = n

� if m = n� 1
�� if m = n+ 1

0 otherwise

where � = �(1���)
(1�(����)) . De�ne

g(�) = ��e�i� + 1 + �ei�:

The set f'(x � n)gn2Z forms a Riesz basis for the closure of their span
if and only if g is a strictly positive function. Equivalently, if and only
if j�j < 1

2 . This is easily seen to be the case under our assumption that
j�j < 1 and j1��j < 1. In particular, if ' is a continuous three{term scaling
function with compact support, then the translates of ' automatically have
the Riesz basis property.

By computing a Wiener{Hopf factorization of the function g, we can
determine from ' a scaling function '] whose translates, '](x � n), are
mutually orthogonal. As a general procedure, there exists a function q(�) =P

n� 0 qne
in� such that g = jqj2. When it makes sense to write

1

q
(�) =

X
n� 0

hne
in�;

'](x) =
X
n� 0

hn'(x � n):

In our case,
q(�) = a+ bei�:

Further, in this case, hn = a(�b=a)n.
If � is real, then ' is increasing for x�1 and decreasing for x� 1. In

particular, the Hausdor� dimension of the graph of ' is 1. If � is not real
the real and imaginary parts of ' are not piecewise monotonic functions.
The Hausdor� dimension of these graphs may hold some surprise.
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