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Abstract

Let X1, X5,...,X, be an arbitrary sequence of iid random variables
such that £|X;| = 1. The minimum m, of E|X1+ X+ ...+ X, | is taken
for random variables X; whose support contain exactly two points. In
particular we get that ms = 1 and m3 = 1.3316. Our approach is variational
and can be generalized to other symmetric convex kernels. Related results
were obtained by Hoeffding (1955), Loéve (1977) and Hildebrand (1984).
An alternative probabilistic approach to the problem using a convexity
argument is included in the appendix.

Introduction

Let X1,..., X, be asequence of not necessarily identically distributed
independent random variables and let K be a real valued function defined
on R". Hoeffding (1955) considered the following extremal problem:

Maz(Min)EK(Xy, ..., X,)
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under the constraints
Egi;(X;) =cij; 1<i<k; 1<j<n,

where g;; are given real valued functions on R and where ¢;; are given
real numbers. He proved that, under rather general conditions, one needs
to consider only discrete random variables X; which are supported on at
most k + 1 points (see also Karlin and Shapley (1953), and Dubins (1962)).
Hoeffding emphasized that the same optimization problem is much more
difficult if X7, X2,..., X, are assumed to be identically distributed (the iid
case). In fact, in the iid case, a result of Hartley and David (1954) shows
that the least upper bound for Emaz(X1, Xo, ..., X,) given EX; and EX]»2
cannot be approached arbitrarily close with discrete distributions having a
bounded number of steps. For some special cases, where n = 2, the 1id case
was considered in Hoeffding and Shrikhande (1955). The main difficulty
in the identically distributed case is the non-linear nature of Hoeffding’s
variation technique.

§1. A Mad Theorem

Several authors have studied the problem of minimization of the mean
absolute derivation (MAD):

Min B\ X1+ ...+ X,| (%)

under the constraints
ElX;|=1 1l<jz<n,

where X1, Xa,...,X, are iid. Hoeffding and Shrikhande (1955) consid-
ered the case n = 2 using direct techniques of variations which lead to the
study of quadratic functions. Loéve (1977, prob. 15, p. 278) studied the
case where X is centered at the median which enabled him the use of sym-
metrization techniques. More recently, Hildebrand (1984), using Jensen’s
inequality, studied the case n = 2 where X; is symmetric and centered at
its expectation. In the above cases the extremal distribution function is
T = %(H_l + M) where H, denotes the Heavyside distribution function
with jump at the point a. In what follows, we extend the variational tech-
niques introduced by Hoeffding to prove that the extremal problem (x) has
an extremal distribution that is supported at two points. We also introduce
an example where the extremal distribution is not symmetric.

Theorem 1. Let X1, X5,..., X, be a sequence of itd random variables
such that E|X;| =1 Then the minimum of

| X1+ Xo+. ..+ Xu"; 721,

1s attained for a random wvariable that is supported on exactly two points,
one of which ts nonnegative, and the other nonpositive.
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Lemma 1 (Loeve (1977), prob. 2, p. 275.). Let r>1 and X1, Xs,..., X,
be iid random variables. Then E|X1+Xo+.. .+ X,|" < oo iff B X;|" < c0.

Let D, be the set of all distribution functions F' such that

/ |z|"dF < oo and / |z|dF =1,
»® »®

and let C} be the subset of D, which consists of all distribution functions
supported on at most k& points. We endow D, with the norm:

[|IF|| = / max(l, |z|")dF.
®

With respect to this topology we have the following result.
Lemma 2. | J;2, C) is dense in D,.

Proof. Fix F in D, and define

Fi(x) { 0; x <0
xr) =
! F(z); x>0
and Fy(z) = 0if F(0) = 0 or else
F(z); =<0
F. =
2(2) { 0; x> 0.

Then F(z) = Fi(x)+ Fao(x). Put

/dFlzozl, /szIOzz, /l‘dFlzﬁl and /l‘szI—ﬁz.
R R R R

Since F'is in D, we have
0[1—1—0[2:1 and 61—1—62:1

Now let X denote the normed linear space of all right continuous non-
negative and monotone non-decreasing functions G on i+ such that G(z) =
0 for # < 0 and [}, [#["dF < co. Then the subspace ¥ of all G in X which
are finitely supported is dense in X. We now apply the following result of
Deutsch (1966):

LetY be a dense subspace of a topological vector space X. Then
for every x € X, neighborhood U of x and T1,... T, € X’ (the
topological dual of X ), there is a y € Y such that y € U and

Ti(x)=T;(y); j=1,..,n.
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We conclude that in a small neighborhood of Fy there exists a G € Y

such that
/ dG1 = 1 and / l‘dGl = 61.
R R

Similarly, if X is the normed linear space of right continuous nonnegative
and monotone nondecreasing functions G on R~ such that G(z) = 0 for
>0 and [ |¢|"dF < oo and Y is the subspace of X of finitely supported
functions, then in a small neighborhood of Fs, there exists a G5 € Y such

that
/ dG2 = ¥y / l‘dGz == —62.
R R

Hence G = G14+G5 18 in a small neighborhood of F' and belongs to Uzozl Ck.
Lemma 3. K(’“)(F) = Fp|Xy+ ...+ X,|" is a continuous functional.

Proof. If ' and (G are two distribution functions then

dF(z)dF(z3)...dF(xy) — dG(21)dG(x2) .. . dG(xy)

= > dG(w1). G [d(F = ) ()ldF (xig) .. dF (x0).

with an appropriate interpretation for the extreme indices 0 and n+ 1. By
the convexity of |z|"(r > 1) we have

(S = (355 e (e )

k=1

n

S

k=1

Thus, if F and G are in D, then
KO(F)y— K7(G)

<n! ZZ/W |z dG(21) ... [d(F = G)(@i)] ... dF (wn)

k=1i=1

and

jgn|kadG%xQ..[du7—wﬁxxﬁ]”.dPKxn)

:{AWW—GWMAMWQMiM¢k
Jx l2"1d(F = G)()| it i =k

from which the continuity follows.

Lemmas 2 and 3 imply that

inf KU(Fy= inf KU)(F).
rebD, FeuCy
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Therefore, without loss of generality, we may only consider discrete distri-
butions. In the following lemma we exclude the case » = 1 because || is
not strictly convex and not differentiable everywhere.

Lemma 4. Suppose that the minimum of KU)(F)(r > 1) in Cy is at-
tained for Fy. Then Fy is supported on at most two points, one of them is
nonnegative and the other one is nonpositive.

Proof. Suppose indirectly, that supp Fy = {b1,bs,..., by} where m > 2
and 8; = Fy(b; +0) — Fr(b; — 0). We introduce a variation F} of Fj such
that for some fixed 1<i # j<m, all ¥'s and 's are kept fixed except for

the values of b;, 3;,b; and §; that are changed as follows. Choose ¢ and j
such that b; # 0 and |b;| # [b;| and put

B =P +ec bf =b;+¢
ﬁ;:ﬁ]’—EC b;:b]'
where ¢ = —sgn(b;)5;/(|b;| — |bj| + esgn(b;)). For small €’s F}¥ is in Cy and

thus
KU(Fp) > KU(Fy).

Recall the Heavyside distribution H, and put J(x,) = Ep | X1+ X2+, ..+
Xp—1+z,|". Using the symmetry of the kernel function |&1+as+. ..+ 2,]|"
we have

EC(Fy) = KW (Fy — ecHy, + ecHy, e + Bi(Hp,4e — Hp,) + O(€%))
= KU(Fp) + ne /% J(@)d(c(Hy 4 ()
— Hy,(2)) + Bi(Hy,pe(2) = Hy,(x))/€) + O(e?)

= KO(Fy) + ne [C(J(bi o= Ity + g = TG

+0(e%)
> KU(F).

Thus, we get

ne [c(J(bi o) —J(b)) + Bi dUhs 63 — J(bi)] +0(e%) » 0.

Therefore, using the differentiability of |z1 + ...+ zx|"(r > 1), we get

J(b;) = J(b;)

nes; [—sgn(bi) B =151 + J’(bi)] + o(e) > 0.

for any positive or negative (small) e. Hence

J'(b) = ngn(!ﬁ). (1)
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We shall show that there is only one nonnegative number in supp Fy.
Suppose b; > 0. If b; >0 then we see from (1) that the tangent line of J
at b; has the same slope as the secant connecting (b;, J(b;)) and (b;, J(b;)).
Since J is a finite convex combination of strictly convex curves (r > 1) we
get a contradiction. Similarly, supp Fj contains at most one nonpositive
point.

Remark 1. One can easily see that under the constraint F|X| = 1 the
minimum of E|X; + ...+ X,|" is not attained for one point distributions
(Hy or H_;). Thus the minimum is taken for distributions supported
on exactly two points.

If supp Fy contains two points, say by > 0 and b3 < 0 then (x) shows
that J'(by) = —J'(by). We shall need this relation later.

Proof of Theorem 1. Let » > 1. Then by the previous lemmas we have
m =inf K"(F) = inf KU(F)
D, uCs

— inf(inf K™

= H]gf(lCI}kf KY(F))

= i%f(K(’")(Fk))
where F}% 1s in Cs and hence Fy = F5. Therefore

m = KU (Fy).

Only the case r = 1 has not been settled. Denote by FZ(T) the extremal
distribution function in Cy which minimizes E|X; + ...+ X,|” (r > 1).

We claim that there exists a sequence ri such that Fz(rk converges to some
Fy in C5. To see this, let

supp Fz(rk):{ak,bk}, and ak:Fz(rk)(ak—i—O)—Fz(rk)(ak—O)

such that Fz(rk) is a convergent sequence of distribution functions where
|ar| <1 and |bg|> 1. Then «y converge to some « and ay to some a where
O<a<land |a| < 1. If b, has a finite limit b then Fz(rk) converges to some
Fin C5. Assume indirectly that b; diverges to infinity (a similar argument
works for by diverging to minus infinity). By Lemma 4 we have b, > 0,

ap < 0 for large k and J'(by) = —J'(ay) where
J(w) = Bl X1+ ...+ X1 +a|™

n—1

n—1 o
:Z( ; )(1—ak)"_1_la§€|(n—1—i)ak—|—ibk—|—xn|.

i=0

Since ay, is a bounded sequence and b, diverges to infinity, we conclude that
the functions

Gi(zp)=(n—1—=Dap +iby +x,, i=1,2,...,n
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satisfy G;(ay) > 0 and G;(by) > 0 for sufficiently large k. This implies that
both J'(ar) and J'(by) are positive which leads to a contradiction. Hence
F2 s in Cz.

Let F' minimize Ep|X; + ...+ X,| on Dy. Since |21+ ...+ @,|" is
monotone as r decreases to one (decreasing on the subset |21 4+...+ 2, <1
and increasing on its complement), we conclude by the Lebesgue monotone
convergence theorem that

KO(F) — KMD(Fy).

We also have
KRy = KO(Ry).

because this sequence is a finite combination of continuous functions in rg,
ayp, and ay. But

Ko (P < KU (F)
and therefore in the limit we get that
KW(Fy) < KW(F)

and hence equal. This completes the proof of the theorem:.

§2. Special Cases, Generalizations

We consider the case n = 3 and » = 1. By Theorem 1,
Hll)irIlE|X1 + Xo+ X3 = Héi;lE|X1 + Xo + X35
= min(e? - 3a 4 3a*(1 — a)|2a + b + 3a(1 — a)?|a + (1 — «)?|3b))
under the constraint
aa—(1—a)b=1, a>0, b<0 and 0<a<l.

Fixing «, and noting that & is linear in a, the last expression is a con-
vex combination of piecewise linear functions of a. Hence, it attains its
minimum at a corner point, specifically when

a+2b=0 or b+2a=0.

These are a symmetric pair and therefore we need only consider the first
case which yields

a=1/2—«a) and b=-2/(2— «).
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The minimum of

363 /(1 — a) + 30%(1 —a)|2/(2 — o) + 2/(2 — )
+ (/2= )= 1)/(1 —a)]
+3a(l —a)?|1/(2—a) + 20/(2 —a) = 1)/(1 — )|
+ (1= a)’3)(a/(2—a) = 1)/(1 - a)

i1s attained for a® = .6527 and thus ¢ = .7422, b = —1.4844. Finally
FE|X1 4+ X» + X5|>1.3316.

For large n we have the following asymptotic result.

Proposition 1. Lel T, be the distributlion function that minimizes F| X1+
o4+ Xy | where Xy, ..., X,y are did such that E|X;| =1 and T = %(H_l +
Hy). Then T, converges in law to T as n tends to infinity.

Proof. It is readily verified that

n n . )
ElXi4. . 4+ X, =) (j)|n—2]|/2]

j=0

has magnitude \/n . On the other hand if X;,..., X, areiid then X;+.. +
X, 1s asymptotically normally distributed with expected value ~ nEX;.
Hence

Ep|Xo+ .. .+ X, |2Er | Xa+ .. .+ Xo|2|Er, (X1 + ...+ X0)]
NnETnX

which is a contradiction unless Fp X tends to zero. Since T), is supported
at two points we conclude that 7, converges in law to 7.

The method of the proof of Lemma 4 shows that the following general
result also holds.

Theorem 2. Let Q(x1,%2,...,%,) : R” — R be a symmetric strictly con-
ver differentiable kernel function. Let X1 X5, ..., X, be utd random vari-
ables with distribution function F. Put K9(F) = EpQ(X1,Xs,...,X,),
Dg = F : K9(F) < 0o and Ep|X| = 1 and let Cy, be the subset of Dg
whose elements are supported on at most k points. If

inf K9(F)= inf KO9(F)
FeDg FeupCr

then K@ (F) is minimized by an F supported on two points.

It would be interesting to replace the condition Er|X| = 1 by some
more general condition of the form EFpg(X) = ¢ where g : R — R* ¢ € R*.
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Appendix

The following probabilistic approach uses a convexity argument and
was suggested by Burgess Davis.

Theorem 3. Let X, X1, Xa,..., X, be an arbitrary sequence of itd random
variables, and f: R" — R, g:R — R conver functions (in each variable)
such that E(f(X1,Xa,..., X)) and E(g9(X)) exist. If g is a broken line
with k linear segments then the minimum of E(f(X1, Xa, ..., Xy)) is taken
for random variables X with at most k values.

Corollary. Theorem 1.

Proof of Theorem 3. Let F be an arbitrary o-algebra, and put X, =
E(X;|F). Then by Jensen’s inequality F(f(X1, Xa,..., Xpn)|F) > f(Xl,Xz,
G Xn)z 2 f(Xl,Xz, . ,Xn) a.s., and taking expectations in both
sides B(f(X1,X2,...,Xp))> Ef(Xl,Xz, e ,Xn) On the other hand,
again by Jensen’s inequality F(g(X)) > E(g(f()) with equality iff F is such

that
Bg(0)I9) = g(E(X]9) o (4)

In this case it is clear that given E(g(X)), the minimum of E(f(X1, X,
.y Xy)) is taken for random variables of the form X = E(X|J).

In case g is a convex broken line with k£ linear segments, then one
can easily define a function ¢ with k values such that (xx) holds if F is
generated by this function ¢. E.G. if g(z) = |z| then

+1 0
¢<$>:{—1 iio

is a good choice.
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