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Abstract

Let X1; X2; : : : ; Xn be an arbitrary sequence of iid random variables
such that EjXjj = 1. The minimum mn of EjX1+X2 + : : :+Xnj is taken
for random variables Xj whose support contain exactly two points. In
particular we get thatm2 = 1 andm3 = 1:3316. Our approach is variational
and can be generalized to other symmetric convex kernels. Related results
were obtained by Hoe�ding (1955), Lo�eve (1977) and Hildebrand (1984).
An alternative probabilistic approach to the problem using a convexity
argument is included in the appendix.

Introduction

LetX1; : : : ; Xn be a sequence of not necessarily identically distributed
independent random variables and let K be a real valued function de�ned
on <n. Hoe�ding (1955) considered the following extremal problem:

Max(Min)EK(X1; : : : ; Xn)
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under the constraints

Egij(Xj) = cij; 1� i� k; 1� j �n;

where gij are given real valued functions on < and where cij are given
real numbers. He proved that, under rather general conditions, one needs
to consider only discrete random variables Xj which are supported on at
most k+1 points (see also Karlin and Shapley (1953), and Dubins (1962)).
Hoe�ding emphasized that the same optimization problem is much more
di�cult if X1; X2; : : : ; Xn are assumed to be identically distributed (the iid
case). In fact, in the iid case, a result of Hartley and David (1954) shows
that the least upper bound forEmax(X1; X2; : : : ; Xn) givenEXj and EX2

j

cannot be approached arbitrarily close with discrete distributions having a
bounded number of steps. For some special cases, where n = 2, the iid case
was considered in Hoe�ding and Shrikhande (1955). The main di�culty
in the identically distributed case is the non-linear nature of Hoe�ding's
variation technique.

x1. A Mad Theorem

Several authors have studied the problem of minimization of the mean
absolute derivation (MAD):

MinEjX1 + : : :+Xnj (?)

under the constraints
EjXj j = 1; 1� j �n;

where X1; X2; : : : ; Xn are iid. Hoe�ding and Shrikhande (1955) consid-
ered the case n = 2 using direct techniques of variations which lead to the
study of quadratic functions. Lo�eve (1977, prob. 15, p. 278) studied the
case where X is centered at the median which enabled him the use of sym-
metrization techniques. More recently, Hildebrand (1984), using Jensen's
inequality, studied the case n = 2 where Xj is symmetric and centered at
its expectation. In the above cases the extremal distribution function is
T = 1

2(H�1 + H1) where Ha denotes the Heavyside distribution function
with jump at the point a. In what follows, we extend the variational tech-
niques introduced by Hoe�ding to prove that the extremal problem (?) has
an extremal distribution that is supported at two points. We also introduce
an example where the extremal distribution is not symmetric.

Theorem 1. Let X1; X2; : : : ; Xn be a sequence of iid random variables
such that EjXjj = 1 Then the minimum of

jX1 +X2 + : : :+Xnjr; r � 1;

is attained for a random variable that is supported on exactly two points,
one of which is nonnegative, and the other nonpositive.
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Lemma 1 (Lo�eve (1977), prob. 2, p. 275.). Let r � 1 and X1; X2; : : : ; Xn

be iid random variables. Then EjX1+X2+ : : :+Xnjr <1 i� EjXijr <1.

Let Dr be the set of all distribution functions F such thatZ
<
jxjrdF <1 and

Z
<
jxjdF = 1;

and let Ck be the subset of Dr which consists of all distribution functions
supported on at most k points. We endow Dr with the norm:

jjF jj=
Z
<
max(1; jxjr)dF:

With respect to this topology we have the following result.

Lemma 2.
S1
k=1 Ck is dense in Dr .

Proof. Fix F in Dr and de�ne

F1(x) =

�
0; x < 0

F (x); x� 0

and F2(x) = 0 if F (0) = 0 or else

F2(x) =

�
F (x); x < 0

0; x� 0:

Then F (x) = F1(x) + F2(x). PutZ
<
dF1 = �1;

Z
<
dF2 = �2;

Z
<
xdF1 = �1 and

Z
<
xdF2 = ��2:

Since F is in Dr we have

�1 + �2 = 1 and �1 + �2 = 1:

Now let X denote the normed linear space of all right continuous non-
negative and monotone non-decreasing functions G on <+ such that G(x) =
0 for x < 0 and

R
< jxjrdF <1. Then the subspace Y of all G in X which

are �nitely supported is dense in X. We now apply the following result of
Deutsch (1966):

Let Y be a dense subspace of a topological vector space X. Then
for every x 2 X, neighborhood U of x and T1; : : : ; Tn 2 X0 (the
topological dual of X), there is a y 2 Y such that y 2 U and
Tj(x) = Tj(y); j = 1; :::;n.
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We conclude that in a small neighborhood of F1 there exists a G1 2 Y
such that Z

<
dG1 = �1 and

Z
<
xdG1 = �1:

Similarly, if X is the normed linear space of right continuous nonnegative
and monotone nondecreasing functions G on <� such that G(x) = 0 for
x� 0 and

R jxjrdF < 1 and Y is the subspace of X of �nitely supported
functions, then in a small neighborhood of F2, there exists a G2 2 Y such
that Z

<
dG2 = �2

Z
<
xdG2 = ��2:

Hence G = G1+G2 is in a small neighborhood of F and belongs to
S1
k=1Ck.

Lemma 3. K (r)(F ) � EF jX1 + : : :+Xnjr is a continuous functional.

Proof. If F and G are two distribution functions then

dF (x1)dF (x2) : : :dF (xn)� dG(x1)dG(x2) : : : dG(xn)

=
nX
i=1

dG(x1) : : : dG(xi�1)[d(F � G)(xi)]dF (xi+1) : : :dF (xn);

with an appropriate interpretation for the extreme indices 0 and n+ 1. By
the convexity of jxjr(r � 1) we have���� nX

k=1

xk

����r �� nX
k=1

jxkj
�r

= nr
� nX
k=1

jxkj
n

�r
�nr�1

� nX
k=1

jxkjr
�
:

Thus, if F and G are in Dr then

jK(r)(F )�K(r)(G)j

�nr�1
nX

k=1

nX
i=1

Z
<n
jxkjrdG(x1) : : : [d(F �G)(xi)] : : :dF (xn)

and Z
<n
jxkjrdG(x1) : : : [d(F �G)(xi)] : : :dF (xn)

=

� R
< jd(F � G)(x)j R< jxjrdG(x) if i 6= kR
< jxjrjd(F �G)(x)j if i = k

from which the continuity follows.

Lemmas 2 and 3 imply that

inf
F2Dr

K(r)(F ) = inf
F2[Ck

K(r)(F ):
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Therefore, without loss of generality, we may only consider discrete distri-
butions. In the following lemma we exclude the case r = 1 because jxj is
not strictly convex and not di�erentiable everywhere.

Lemma 4. Suppose that the minimum of K(r)(F )(r > 1) in Ck is at-
tained for Fk. Then Fk is supported on at most two points, one of them is
nonnegative and the other one is nonpositive.

Proof. Suppose indirectly, that supp Fk = fb1; b2; : : : ; bmg where m > 2
and �i = Fk(bi + 0) � Fk(bi � 0). We introduce a variation F�k of Fk such
that for some �xed 1� i 6= j �m, all b0s and �0s are kept �xed except for
the values of bi; �i; bj and �j that are changed as follows. Choose i and j
such that bi 6= 0 and jbij 6= jbjj and put

��i = �i + �c

��j = �j � �c

b�i = bi + �

b�j = bj

where c = �sgn(bi)�i=(jbij � jbjj+ �sgn(bi)). For small �'s F �k is in Ck and
thus

K(r)(F �k )�K
(r)(Fk):

Recall the Heavyside distribution Ha and put J(xn) = EFk jX1+X2+ : : :+
Xn�1+xnjr. Using the symmetry of the kernel function jx1+x2+ : : :+xnjr
we have

K(r)(F �k ) = K(r)(Fk � �cHbj + �cHbi+� + �i(Hbi+� �Hbi) +O(�2))

= K(r)(Fk) + n�

Z
<
J(x)d(c(Hbi+�(x)

�Hbj (x)) + �i(Hbi+�(x)�Hbi(x))=�) + O(�2)

= K(r)(Fk) + n�

�
c (J(bi + �)� J(bj)) + �i

J(bi + �)� J(bi)

�

�
+ O(�2)

� K(r)(Fk):

Thus, we get

n�

�
c (J(bi + �)� J(bj)) + �i

J(bi + �)� J(bi)

�

�
+O(�2)� 0:

Therefore, using the di�erentiability of jx1 + : : :+ xnjr(r > 1), we get

n��i

�
�sgn(bi)J(bi) � J(bj)

jbij � jbjj + J 0(bi)
�
+ o(�)� 0:

for any positive or negative (small) �. Hence

J 0(bi) =
J(bj)� J(bi)

jbjj � jbij sgn(bi): (1)
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We shall show that there is only one nonnegative number in supp Fk.
Suppose bi > 0. If bj � 0 then we see from (1) that the tangent line of J
at bi has the same slope as the secant connecting (bi; J(bi)) and (bj ; J(bj)).
Since J is a �nite convex combination of strictly convex curves (r > 1) we
get a contradiction. Similarly, supp Fk contains at most one nonpositive
point.

Remark 1. One can easily see that under the constraint EjXj = 1 the
minimum of EjX1 + :::+ Xnjr is not attained for one point distributions
(H1 or H�1). Thus the minimum is taken for distributions supported
on exactly two points.

If supp Fk contains two points, say b1 � 0 and b2 < 0 then (?) shows
that J 0(b2) = �J 0(b1). We shall need this relation later.

Proof of Theorem 1. Let r > 1. Then by the previous lemmas we have

m = inf
Dr

K(r)(F ) = inf
[Ck

K(r)(F )

= inf
k
(inf
Ck

K(r)(F ))

= inf
k
(K(r)(Fk))

where Fk is in C2 and hence Fk = F2. Therefore

m = K(r)(F2):

Only the case r = 1 has not been settled. Denote by F
(r)
2 the extremal

distribution function in C2 which minimizes EjX1 + : : :+ Xnjr (r > 1).

We claim that there exists a sequence rk such that F
(rk)
2 converges to some

F2 in C2. To see this, let

supp F
(rk)
2 = fak; bkg; and �k = F

(rk)
2 (ak + 0)� F

(rk)
2 (ak � 0)

such that F (rk)
2 is a convergent sequence of distribution functions where

jakj� 1 and jbkj�1. Then �k converge to some � and ak to some a where

0��� 1 and jaj�1. If bk has a �nite limit b then F
(rk)
2 converges to some

F in C2. Assume indirectly that bk diverges to in�nity (a similar argument
works for bk diverging to minus in�nity). By Lemma 4 we have bk > 0,
ak < 0 for large k and J 0(bk) = �J 0(ak) where

J(xn) = EjX1 + : : :+Xn�1 + xnjrk

=
n�1X
i=0

�
n� 1

i

�
(1� �k)

n�1�i�ikj(n� 1� i)ak + ibk + xnj:

Since ak is a bounded sequence and bk diverges to in�nity, we conclude that
the functions

Gi(xn) = (n� 1� i)ak + ibk + xn; i = 1; 2; : : : ; n
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satisfy Gi(ak) > 0 and Gi(bk) > 0 for su�ciently large k. This implies that
both J 0(ak) and J 0(bk) are positive which leads to a contradiction. Hence
F2 is in C2.

Let F minimize EF jX1 + : : :+Xnj on D1. Since jx1 + : : :+ xnjr is
monotone as r decreases to one (decreasing on the subset jx1+ : : :+xnj� 1
and increasing on its complement), we conclude by the Lebesgue monotone
convergence theorem that

K(r)(F )! K(1)(F2):

We also have
K(rk)(F

(rk)
2 )! K(1)(F2):

because this sequence is a �nite combination of continuous functions in rk,
ak, and �k. But

K(rk)(F
(rk)
2 )�K(rk)(F )

and therefore in the limit we get that

K(1)(F2)�K(1)(F )

and hence equal. This completes the proof of the theorem.

x2. Special Cases, Generalizations
We consider the case n = 3 and r = 1. By Theorem 1,

min
Dr

EjX1 +X2 +X3j = min
C2

EjX1 +X2 +X3j
= min(�3 � 3a+ 3�2(1� �)j2a+ bj+ 3�(1� �)2ja+ (1� �)3j3bj)

under the constraint

�a� (1� �)b = 1; a� 0; b < 0 and 0 < � < 1:

Fixing �, and noting that b is linear in a, the last expression is a con-
vex combination of piecewise linear functions of a. Hence, it attains its
minimum at a corner point, speci�cally when

a+ 2b = 0 or b+ 2a = 0:

These are a symmetric pair and therefore we need only consider the �rst
case which yields

a = 1=(2� �) and b = �2=(2� �):
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The minimum of

3�3=(1� �) + 3�2(1 � �)j2=(2� �) + 2=(2� �)

+ (�=(2� �)� 1)=(1� �)j
+ 3�(1� �)2j1=(2� �) + (2�=(2� �)� 1)=(1� �)j
+ (1� �)33j(�=(2� �)� 1)=(1� �)j

is attained for �� = :6527 and thus a = :7422, b = �1:4844. Finally
EjX1 +X2 +X3j� 1:3316.

For large n we have the following asymptotic result.

Proposition 1. Let Tn be the distribution function that minimizes EjX1+
: : :+Xnj where X1; : : : ; Xn are iid such that EjXjj = 1 and T = 1

2(H�1+
H1): Then Tn converges in law to T as n tends to in�nity.

Proof. It is readily veri�ed that

EjX1 + : : :+Xnj =
nX
j=0

�
n

j

�
jn� 2jj=2j

has magnitude
p
n . On the other hand ifX1; : : : ; Xn are iid then X1+: : :+

Xn is asymptotically normally distributed with expected value � nEX1.
Hence

ET jX1 + : : :+Xnj�ETn jX1 + : : :+Xnj� jETn(X1 + : : :+Xn)j
� nETnX

which is a contradiction unless ETnX tends to zero. Since Tn is supported
at two points we conclude that Tn converges in law to T .

The method of the proof of Lemma 4 shows that the following general
result also holds.

Theorem 2. Let Q(x1; x2; : : : ; xn) : <n ! < be a symmetric strictly con-
vex di�erentiable kernel function. Let X1;X2; : : : ; Xn be iid random vari-
ables with distribution function F . Put KQ(F ) = EFQ(X1; X2; : : : ; Xn);
DQ = F : KQ(F ) < 1 and EF jXj = 1 and let Ck be the subset of DQ

whose elements are supported on at most k points. If

inf
F2DQ

KQ(F ) = inf
F2[kCk

KQ(F )

then KQ(F ) is minimized by an F supported on two points.

It would be interesting to replace the condition EF jXj = 1 by some
more general condition of the formEF g(X) = c where g : <m ! <k; c 2 <k:
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Appendix

The following probabilistic approach uses a convexity argument and
was suggested by Burgess Davis.

Theorem 3. Let X;X1; X2; : : : ; Xn be an arbitrary sequence of iid random
variables, and f : <n ! <; g : < ! < convex functions (in each variable)
such that E(f(X1; X2; : : : ; Xn)) and E(g(X)) exist. If g is a broken line
with k linear segments then the minimum of E(f(X1; X2; : : : ; Xn)) is taken
for random variables X with at most k values.

Corollary. Theorem 1.

Proof of Theorem 3. Let F be an arbitrary �-algebra, and put X̂i =
E(XijF). Then by Jensen's inequalityE(f(X1; X2; : : : ; Xn)jF)� f(X̂1; X2;
: : : ; Xn)� : : : � f(X̂1; X̂2; : : : ; X̂n) a.s., and taking expectations in both
sides E(f(X1; X2; : : : ; Xn))�Ef(X̂1; X̂2; : : : ; X̂n). On the other hand,
again by Jensen's inequality E(g(X))�E(g(X̂)) with equality i� F is such
that

E(g(X)jF) = g(E(XjF)) a:s: (??)

In this case it is clear that given E(g(X)), the minimum of E(f(X1; X2;
: : : ; Xn)) is taken for random variables of the form X̂ = E(XjF).

In case g is a convex broken line with k linear segments, then one
can easily de�ne a function � with k values such that (??) holds if F is
generated by this function �. E.G. if g(x) = jxj then

�(x) =

�
+1 x� 0
�1 x < 0

is a good choice.
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