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§0. Introduction

In the classical case all unirational surfaces are rational. This was
first realized by Oscar Zariski ([20], p. 314). Prompted by Hironaka’s
suggestion, we began an investigation of the type of surfaces introduced by
Zariski in that paper. The research was originally begun by Blass in 1970-
71 at Harvard with the advice of Hironaka and Zariski, and then during
1974-1977 he continued under the direction of J. S. Milne and M. Hochster
at the University of Michigan. The two remaining authors entered this
study a bit later.

A smooth algebraic surface X defined over an algebraically closed
field, k, of characteristic p > 0 is called a Zariski Surface (or Z.5) if and
only if there exists two elements z, y in the function field of X, denoted
k(X), that are algebraically independent over k£ and such that

k(xe,y) Ck(X) C k(2'/? y'/7).

The main results of the paper are as follows. First of all, section 3
answers a question posed by Zariski in 1970-71. He asked whether a Z.5
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with vanishing geometric genus, p,, is necessarily rational. A long coun-
terexample is given in section 3. Secondly, in section 5 it is shown that the
value of p, is unbounded over an algebraically closed field of characteristic
larger than or equal to 5. This, together with some other results in section
3, illustrates the richness of the class of ZS.

In section 4 a more detailed study is made of a particularly simple
subclass of Z7.5’s which we call “generic” ZS’s. (A generic 7S is a smooth
minimal model of the function field of a hypersurface given by zF = f(z,y)
where f has degree p 4+ 1 and the hypersurface has only the simplest sin-
gularities.) We determine pq, py, Po, K? for a generic Zariski surface as
well as the rank of the Néron-Severi group p and the e’tale Betti numbers,
b;. Using “generic Zariski surfaces”, we give examples of Z.5’s which are of
general type and K3. Trivially there also exist rational Z5’s.

All Zariski surfaces are unirational and consequently supersingular,
1.e., p = bs. Thus the richness of the class of Z5’s in characteristic p > 0 is
in sharp contrast to the situation in characteristic 0 where every unirational
surface is well known to be rational.

The principal technical tool used in the paper is the theory of adjoints
and multi-adjoints. This theory deals with the influence of singularities on
differential forms and is classical. However, since no reference could be
found for the results that we needed, a self-contained exposition of the
facts from the theory that we use is given in section 2. We develop the
theory of adjoints for a normal, two-dimensional hypersurface in affine or
projective 3-space. The results about adjoints are proved over an arbitrary
algebraically closed field of arbitrary characteristic.

7 S’s are an interesting subclass of unirational surfaces. Among the
many open problems concerning Z5’s, we mention two very concrete ones.
The first one is to answer Zariski’s questions in characteristic p > 0. The
second one is whether H!(X,Ox) can be nontrivial for a Zariski surface X.
Added in revision: W. E. Lang gave an example of a ZS with H* nontrivial.
He also settled by another example Zariski’s question in characteristic 3 [8].

Notation.

k — algebraically closed field of characteristic p > 0, unless stated to the
contrary.
A" — affine n-space over k.
P" — projective n-space over k.

Surface — irreducible, reduced, quasi-projective variety over k.
If X denotes a surface then k(x) denotes its function field.
For a smooth surface X we will write as usual:

py = geometric genus of X = dim H*(X, Ox).
pa = arithmetic genus of X = p, — dim H'(X, Ox).
p; = dim H°(X, K®), where K is the canonical line bundle on X.
p1 = py by Serre duality.
g = dim of the Picard variety of X = dim of the Albanese variety of X.
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The notation:

F:f(z,y,z) = 0 means F' = Spec%; F C A3 If F(x,y,2, %)

is a homogeneous form:

F:F(x,y,2,2) =0 means F = Proj %; F C P3.

If X is a surface we denote by Sing(X) the subscheme consisting of singular
points of X. X’ denotes X — Sing(X). A desingularization of X is a
proper, birational surjective morphism 7: X — X satisfying the following
two conditions:

i) X is smooth, and

iy “1(x!

i) =~ H(X") RILECUN
If X 1s a surface and p € X is a closed point, then we refer to blowing up
the point p as “quadratic transformation with center p”.

Let I be an ideal in aring R. r € R is said to be integrally independent

on I if there exists an equation

X'’ is an isomorphism.

a4 a2+ 4a, =0 with a; €I’

I 18 integrally closed if it contains all elements of R integrally dependent on
T (see [13], p. 34). The reader is referred to ([2], [9]) for the definition and

basic properties of rational singularities.

§1. Zariski Surfaces: definition and general properties

Zariski surfaces are defined and some of their simplest properties are
given in this section. X denotes a smooth projective surface over k, k(X)
is the function field of X, and k =k, char(k) = p > 0.

Definition 1.1.0. A smooth projective surface X is called a Zariski surface
if there exists two elements z, y in k(X) that are algebraically independent
over k such that k(z,y) C k(X) C k(x™? y'/P).

Remark 1.1.1. Unless one of the inclusions in (1.1.0) is an equality, the
extensions k(X) over k(z,y) and k(z'/? y'/?) over k(X) are both purely
inseparable of degree p.

Remark 1.1.2. We propose to call a surface a singular Zariski surface if
it satisfies (1.1.0) but is not necessarily smooth.

Remark 1.1.3. Definition (1.1.0) is birational, i.e., it depends only on the
function field; thus any smooth projective surface birationally equivalent
to a Zariski surface is itself a Zariski surface. Two surfaces are birationally
equivalent if they have isomorphic function fields over k.

Remark 1.1.4. A Zariski surface is unirational by definition.

Notation 1.1.5. We shall sometimes abbreviate “Zariski surface” by Z.5.



Zariski Surfaces: Part I 37

Proposition 1.2.0. X is a Zariski surface if and only if X is birationally
equivalent to a hypersurface in A® defined by an irreducible equation of the
form 2P — f(x,y) = 0 where f(x,y) € k[z,y], the polynomial ring in two
variables over k.

Proof. Suppose that X is birationally equivalent to Spec (k[z,y, z]/(2F —
flz,y)) with 22 — f(x,y) irreducible. Then k(X) = k(z,y, z) where Z, g,
Z are the residue classes in k[z,y, z]/(2F — f(x,y)) of x, y, z, respectively.
We have, by standard field theory,

k(x,y) = k(Z,9) C k(Z,7, 7).

Since z = fi(#/7,4'/?), where f; is obtained from f by taking p-th
roots of all the coefficients, we have k(Z,y,2) C k(2'/?, 5'/P). Since [k(Z,
y): k(217 y'/P)] = p? and 2P € k(Z,y), we see that k(z,y) ¢ k(z,9,2) €
k(7 g'/P) so that X is a ZS.

Suppose next that X i1s a Zariski surface. Then there exists z,y €
k(X) such that k(z,y) C k(X) C k(x'/?,y*/?). If either containment is not
proper, then k(X)) is birationally equivalent to the hypersurface F: 2P — x.
Thus, we may assume that both containments are proper. Let z € k(X) —
k(z,y). Then 2P = w(z,y)/v(x,y) with w,v € k[z,y] and w/v not a p-
th power of an element in k(z,y). 2» = w/v implies z{ = wv?~! where
71 =z v € k(X)) — k(z,y). Since w/v is not a p/-th power in k(z,y),
niether is wv~! a p-th power in k[z,y]. Since k(z,y) G k(z,y,21) C k(X)
and [k(X): k(z,y)] = p, we obtain k(X)) = k(z,y, z1). Tt follows that X is
birationally equivalent to

k[ja ga 21]
(211) - w(ja g)v(ja g)p_l)

Spec

where Z, y, z; are indeterminants and the equation is irreducible. a

Proposition 1.3.0. Given any irreducible, reduced hypersurface in A3,
F:2P = f(x,y), there exists a Zariski surface I birationally equivalent to

F.

Proof. Let F be the closure of F in P2, Let Fbea desingularization of F,
which Abhyankar proved exists [1]. Then F is a smooth projective surface
which is birationally equivalent to F' so it is a Z.S by (1.2.0).

Remark 1.3.1. I, F, F will often be given the above meaning throughout
the paper.

Remark 1.3.2. I isnot unique. However, if we require Ftobea relatively
minimal model of k(F) then F will be unique unless F is ruled or rational
([18], [19]). Tt will be proved later that ¢ = dim Alb(ﬁ) =0 (see (1.6.0)),
where Alb(ﬁ) denotes the Albanese variety of F. 1t follows that F' ruled

implies I rational.
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Proposition 1.4.0. Let ty, ts be indeterminates. Let L be a field with
k(t1,t2) C L C k(ti/p,té/p). Then there exists « 7S X with k(X) =~ L.

Proof. Replace k(X) by L in the proof of the “only if” direction of Propo-
sition (1.2.0) to obtain a hypersurface F': 2F = f(x,y) with k(F) = L. Now
use (1.3.0). O

Proposition 1.5.0. Let k be as above, t1, 15 indeterminates over k. Let
L be the set of all fields L such that k(ty,ts) C L C k(t1/? 1/P). Let P
be the set of all (projective smooth) Zariski surfaces over k. We have a
one-to-one correspondence

L /(field isomorphisms over k) « P8/ (birational equivalence).

Proof. By (1.4.0) and the definitions. O

Remark 1.5.1. We shall use (1.5.0) to show that the set £/ (field isomor-
phisms over k) is infinite when p>5 (see (5.1.2).)

Lemma 1.6.0. The dimension of the Albanese vartety of a Zariski surface
15 0. In fact, the Albanese variety s trivial

Proof. Since Zariski surfaces are unirational, the proof follows from B.
Lang ([8], corollary, p. 25), where a unirational variety is semi-pure. d

Lemma 1.7.0. The Picard variety of a Zariski surface 1s trivial.

Proof. Let I be a Zariski surface. By (1.6.0) the Albanese variety of ﬁ,
Alb(f), is trivial. The Picard variety of F is the same as that of Alb(f)
(Lang, [8], p. 148, Theorem 1), but the Picard variety of the trivial variety
is trivial. d

Proposition 1.8.0. If a non-singular Zariski surface F satisfies Pz(f) =
0, then F' 1is rational.

Proof. This proof is adapted from [20], p. 314 and is given here for the
reader’s convenience. By (1.6.0) and (1.7.0) dim Alb(ﬁ) = dim Picard
variety of F =0. Also Pz(f) = 0 implies p; = 0. Nakal has shown that if
pg = 0 then the dimension of the Picard variety is equal to the dimension
of Hl(ﬁ, Oﬁ) (see [14], Theorem 5). Thus p; — pa = dim Hl(ﬁ, Oﬁ) =0
and hence p, = py, = 0. Also P, = 0 by assumption and the rationality of

F follows from Castelnuovo’s criterion of rationality (see [20]). O

Proposition 1.9.0. Let X be a ZS. Let b; = rank of H,(X, Q) where
L#p. Then by =bys =1 and by = b3 = 0.

Proof. Since ¢ = dim Alb(X) = 0, the proposition follows from [10], Ch.
V and Ch. VI.11. (I



Zariski Surfaces: Part I 39

Remark 1.10.0. Using the method of proof of p. 286 of [15], one can show
that the e’tale fundamental group of a Zariski surface is trivial.

§2. The Theory of Adjoints

The theory of adjoints is well known and classical for algebraic curves.
For surfaces it was developed by Clebsch, M. Noether, the Italian geometers
and Zariski. However, it is difficult to find a complete rigorous treatment of
the theory for a two-dimensional, normal, hypersurface. Without a doubt
that theory has been well known to several writers in the theory of algebraic
surfaces, but no reference could be found for the proofs of the results they
used. It is the purpose of this section to fill this gap. The treatment here
relies only on rudiments of sheaf theory. For a more homological treatment
of adjoints see [4]. We also discuss briefly the notion of multiadjoints and
connections with plurigenera — a favorite topic with Enrique’s but again a
modern reference i1s missing. The theory of adjoints and multiadjoints is
our principal tool in all later sections.

Throughout this section, & will be an algebraically closed field of any
characteristic. All surfaces will be assumed to be quasiprojective, irre-
ducible and reduced. Surfaces will be denoted by capital letters V', W, X|
Y, etc. k(X) denotes the function field of a surface X. Q}C(x)/k, Q%(x)/k
are the Kahler differentials of k(X) over k (respectively, two-forms). The
letters p, ¢ always denote closed points.

Proposition 2.1.0. Qi(x)/k is @ one-dimensional vector space over k(X).
If a,b € k(X) are a separating transcendence basis, dadb # 0 in Qz(X)/k
and da db is a basis over k(X) (d:k(X) — Qz(X)/k denotes the usual dif-
ferential map).

Proof. Well known.
Rzemark 2.1.1. a € k(X), a € Qz(X)/k, a#0, o # 0impliesa o # 0 in
LIESVE

Let X be a surface and X’ = X —Sing X. If p € X’ is a closed point,
we define a subset of Qz(X)/k which we shall call Regx (p) as follows:

Definition 2.1.2. « € Regx(p) if and only if & = Xa;db;de;, with a;,b;,¢;
€ (0g)p, where (0y), is the local ring of p.

Proposition 2.2.0. Ifp € X' then Regx (p) is an (Oy)p-module. It is free
of rank one. Ift,, t;, are a regular system of parameters at p then dttdt; 18
a generator of Regx(p) as an (Og)p-module.

Proof. Well known.
Using the above notions we proceed to define a sheaf wx on X which
i1s isomorphic to the sheaf of Kahler two-forms if X is smooth. In the
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general case considered here wx = j. (sheaf of Kahler two-forms on X')
where j: X/ — X is an open immersion.
First we define a presheaf of subsets of Qz(x)/k. Let U C X be open;
define
wx(U) = 7] Regx(p).
peU!

IV CU,wx (V) Dwx(U) and we define the restriction map a:wx (U) —
wx (V) to be the inclusion map.

Proposition 2.3.0. wx is a sheaf of Oy-modules. All restriction maps are
monomorphisms and k-linear.

Proof. wx is clearly a presheaf of O;-modules. To see that wx is a sheaf
assume V = 'UIVi is an open cover of an open subset V of X and «; €
i€

wx (Vi) such that a;ly;nv; = @jlo,ne, for each i,j € I. Then this implies

that o; = ¢; in wx(V; NV}), for each ¢,j € I. For a fixed ¢ this yields

a; €wx(V;)and o; = o for all j € I. Thus o; € 'ﬂIwX(Vj) =wx(U) and
jE€

ozi|vj = «;. Therefore wx is a sheaf of O,-modules as well. O

Definition 2.4.0. Let X C X'. Define wx(S) = ﬂS Regx(q).
q€
Note 2.5.0. If a € OS(OX)q, then awx (S) Cwx(9).
q€

Behavior of wx Under Restriction to Open Subschemes

Proposition 2.6.0. Suppose U is a nonempty open subset of a surface X.
We identify k(U) = k(X) and Qz(U)/k = Qz(X)/k. Then wy(V) = wx (V)
for each V CU.

Proof. The first equality is trivial; the second follows from (2.6.0). |

Behavior of wx Under Certain Birational Maps

Discussion 2.7.0. Let W, Z be surfaces. Let W - Z be a birational
map satisfying the following condition

A . . .
72" RiLECON 7z Is an isomorphism.

Then we have an isomorphism k(Z) == k(W) and m; induces an isomor-
phism Qz(z)/k LN Qz(w)/k of k-vector spaces. We denote the inverse

isomorphism by m, so that Qim)/k — Qz(z)/h

Proposition 2.8.0. Let W - Z be as in (2.7.0). Then ma(ww (7= H(U)))
C w,(U) for every open U C Z.

Proof. Let U C Z be open. Since 7=1(Z') — Z’ is an isomorphism 7
maps wy (7~ 1(U’)) isomorphically onto w,(U) by (2.6.0). The result now
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follows from the fact that #=1(U) D #=1(U’) and the restriction maps on
ww are inclusions. O

Remark 2.8.1. m:ww (7~ (U)) — w,(U) is a monomorphism of k-vector
spaces. In fact, 75 defines a monomorphism of O,-modules 7w ~~ w,.

Affine Case, Adjoints

Assumption 2.8.2. Let us assume that ' C A% is a normal, irreducible,
reduced hypersurface. Throughout this subsection F' will have this mean-
ing. Let us describe wp.

Proposition 2.9.0. There exists a differential op € wp(F') such that for
every U C F open, wp(U) = Op(U)op C Qz(F)/k is a free Op(U)-module
on one generator, op, and such that for every point p € F', op € Regp(p)
and Regr(p) is a free (Op),-module on one generator, namely op.

The differential op is unique up to multiplication by a unit in Op(F).
op will be called a canonical generating differential (abbreviated c.g.d.) on
F. Moreover, if we write F' = Speck[xy, 22, 23]/ (f(21, 22, 23)) and g—gl Z£0

then we may take op = %, i, j, k distinct.

Proof. The proposition is well known, see for instance [16], Ch. III, §5.4,
where non-singularity is assumed but is not essential to the proof.

Remark 2.10.0. or # 0.
Lemma 2.11.0. a ¢ (Op), implies acr ¢ Regr(p).

Proof. Suppose acp € Regp(p). Then acp = d'op, ¢’ € Op(p). Then
(a —a')op =0, hence a — a’ = 0, which shows a € (Op),. O

Definition 2.12.0. Let F be as in (2.8.2). Let p € F be an isolated
singular point. Let F =~ F be any map such that

a) m is birational and proper.

b) w|x~L(F’) is an isomorphism.

c) 7 p) C F.
We call & a resolution of p in F.
Definition 2.13.0. Let F', p be as in (2.12.0). Let op be a canonical
generating differential on . We call a € (Of), an adjoint (locally) at p if

there exists a resolution F' 2= F of pin F such that wi(acp) is regular on
771 (p) (or, equivalently, 71 (acr) € Regﬁ(ﬂ'_l(p))).

Remark 2.13.1. Let o}, be another generating differential on ¥'. We have
oo = uop, v € Op(F) a unit; then 71 (ack) = m1(w)w1(aor). Since m1(u)
is regular on 77 1(p), m1(ac)y) is regular on 7=1(p). This shows (2.13.0) is
independent of the choice of op.
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Proposition 2.14.0 (Independence of the resolution). Again, let F', p be
as in (2.12.0) and let a € O, be an adjoint at p. Let G L F be any reso-
lution of p wn F'; then for any choice of a canonical generating differential
op, we have p1(aop) € Reg(p~t(p)).

Proof. Consider an open neighborhood V of p such that V' = V/U{p}. Let
F == F be a resolution as in (2.13.0), which arises from a € (Op), being an
adjoint. Let Vi = p=}(V), Vo = 7= 1(V); V4, V2 are smooth. We have the
following diagram where 7 is a desingularization of (V1 X Va)req. It is easy to
see that r and s are both birational and proper. If p1(acr) & Reg(p~*(p)),
then p1(aop) has a polar curve on V5. By ([15], page 55), r is a composition
of finitely many quadratic transforms with point centers. Thus ryp;(aop)
cannot be regular on 7.

Vi

v
e (Vi x Va)rea

Va

However, since m1(acp) is regular on V2 and s is everywhere defined,
we see that symi(aop) is regular on Z. But ripi(acp) = simi(aorp); a
contradiction. O

Remark 2.14.1. The above argument is adapted from the one used by
Grauert-Reimenschneider in the analytic case ([6], p. 271).

Remark 2.14.2. If G is isomorphic to an affine normal surface F C A3, we
can define in the obvious way what 1s meant by an adjoint at an isolated
singularity of (G. One easily sees that this notion is independent of the
choice of F' and of the isomorphism.

Theorem 2.15.0. Let G be isomorphic to F C A3, F as in (2.8.3). Let
p € G be an isolated singularity. Then the adjoints in (Og), form an ideal
of finite co-length. Moreover, if G = F: f(x1,%2,23) = 0, then 0f/0x; is
adjoint for every i =1,2,3.

Proof. We may assume G = F' and F' = Spec % Let m: F' — F

be a resolution of p in F'. The partial 0f/0x; is adjoint if 9f/0xz; = 0. If

Of/0x; £ 0, then 0';—2;) = % is a canonical generating differential on F'|
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for 0< 4,4, k<3 all distinct. Then we have (9f/0x;) - 0';—2;) = dxjdxy. Since
T, rp € (Op)p,
mz), m(z) € (] (07),
g€m="(p)
Thus '
m1((0f/021)0W) = dmi(z;)dm(2y) € Regr(v™' (p),

which shows that 9f/0z; is adjoint.

Let us show that the adjoints in (Or), form an ideal. The proof is
standard. Suppose a,b € (Or), and b is adjoint. For any canonical gener-
ating differential op, 71(abor) = m1(a)m1(bop). Since 71(a) is regular on
771(p) and 71 (bor) € Regp(m~1(p)) by (2.14.0), 71 (abor) € Regﬁ(ﬂ'_l(b))
and ab i1s adjoint.

If a, b are adjoint in (Op),, then a + b is trivially. Thus the adjoints
form an ideal in (OF), which we will call Adj(p). Since p € F is an isolated
singularity, the ideal J, = (0f/0x1,0f/0xs,0f/0x3) has finite co-length.
Since J, C Adj(p), the latter has finite co-length. d

Terminology 2.15.1. We call e, = dimg(Or),/Adj(p)) the Noether-
Enriques number of the singularity. It is often denoted p and sometimes
called the “genus”. For surfaces this invariant seems first to have been
studied by Max Neother and then taken up by the Italian school; Enriques
discussed a number of special cases in his book “le Superficie Algebriche”

[5].

Proposition 2.16.0. Let G C X be an open subscheme isomorphic to F' C
A3 where F' is as in (2.8.3). Let oG be a canonical generating differential.
Let X be a desingularization of X, X = X, 7=Y(G) = G. Let Sing(G) =

{p1,...,ps}. Then m(wx(G)) = (0x(G) N Z»Dl Adj(pi))oa.

Proof. We can easily reduce to the case where G = X, G C A3 is affine
and G = G is a desingularization. We need to show

Tz(wa(é)) = (Og(G) n ﬂ Adj(pl)) oG-

Let « belong to the right hand side. Then « = aog, a € Og(G),w here

a is adjoint at all the singular points of Gi. Then m1(o) € wxz((), so o=

mo(m x) € wz(w&v(G)). Suppose 8 € wz(w&v(G)). Then m(8) € w&v(G).
Therefore 3 is regular on G, so f € wg(G') = 0g(G')og. But since G
is normal and G — G’ is a finite set of points, we have Og(G’) = Og(G).
Hence § = aog with a € Og(G). Moreover, since m1(f3) is regular on

7= (p;), j=1,2,...,s, a is adjoint at all the singular points of G, so that

a € Og(G)N () Adj(p;). Thus 3 belongs to the right hand side above.
i=1

O
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For future reference, in section 3 we introduce the definition of an
adjoint surface.

Definition 2.16.1. Let F' = Spec % be as in (2.8.3). let p € I

(kEflyxml?a]))
A(z1,72,%3
subscheme of A3. We say H is an adjoint surface to I at p if A(z1,zq,23)

considered as an element in k[F] is an adjoint of the local ring of F' at p.

be an isolated singularity. Let H = Spec be another closed

Remark 2.16.2. An “adjoint surface” is not assumed to be irreducible or
reduced. It need not be a surface in the sense of this paper.

Projective Case

Definition 2.17.0. Assume X = Proj % where the degree

of F'is n>4; X is assumed to be reduced, irreducible, and normal. Let us
denote by k[X] = k[zo,z1, 22, 23] the graded ring % and by
k[X]a), d=10,1,2,..., the d-th graded piece of k[X].

As usual, we identify k(X') with the set of ratios a/b where a, b € k[X]4

for some d. X 1s covered by four affines
X; = Spec(k[X]x,)O = Speck |:_’ —, =, _:| )

It 1s important to note that each of the X;’s 1s isomorphic to an affine
surface. Explicitly, we have, for example,

k[Yl,YZ,YS]
(F(laylaYQaYE}))

the isomorphism of kHy with k[zi /20, x2/x0, 23/20] being given by y; —
x1/xo; Y2 — xo/wo; Y3 — w3/xo; and similarly for i = 2,3, 4.

Since X 1s reduced and normal, at least two of the partial derivatives
OF/0X; are not identically 0. After renumbering the variables, we may
assume the following condition.

2.17.1. 9F/0Xy # 0 and 0F/0X; # 0 in the polynomial ring k[Xo, X1,
X2, X3] where the X; are indeterminates. Then it is easy to show that
OF/0Xo and OF/0X € k[X](n—1) are also not identically 0 in k[X].

We fix the following canonical generating differentials on Xy, X1, Xa,
and Xs,

Xo &~ Hy = Spec = Spec k[y1, ya, ys],

_ d(@s/xo)d(zs/x0) _ d(za/wo)d(ws/x0)
OF[0X1(1, 1 /w0, ®a/x0, w3/x0)  (OF/0X1)/xg~ '’

(oo}

This second equalit
d d ( q y
Zo/¥2) = (#1/22)d(23/72) is easily justified. See

2=t (OF/0Xo)/®3™" [16], ch. VII 5.4)

g3 =

(
)
09 = (
)
(
)
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Key Computation Lemma 2.18.0. o; = (2;/z;)" %o, 0<i,j<3, in
Deixne

Proof. First compare og and 3.

0 _ d(@a/xo)d(as/x0)

(eo/w3)n—1 (900,901,902,903)

o
T3
2/$3
0/$3 fu/fa
($ $1,$2,$3) Tn—1
xa

1 ((zo/x3)d(2a/a3) — (22/25)d(x0/23))(—d(x0/735))

1

(l‘o/l‘g)4 66)5‘ ($0ax1a$2a$3) 1—1
_ 1 d($2/£3) ($0/$3)
(l‘o/l‘g)S aa_Fl(anxlaxzaxE}) ) CL‘n;_l
1

= 393,

(zo/z3)?

so that oq = (2zo/x3)" %03 in Qz(X)/k. The verification that o¢ = (zo/
)*~405 is similar.

To compare o, 01, o3 with o1, recall that

Jim)a(e) | m)a(E)

b)
axo/x 6X0/x

T2

n—4
Proceed as above to show that oy = (x—Q) 1. We then have that

Ty

n—4 n—4 n—4 n—4 n—4
Lo Lo Lo T2 Lo
T3 T2 T2 Ty Ty
n—4
Thus Ui:(%) o;, 0<1,7<3. d
3

Definition 2.19.0. Assume X to be as in (2.17.0). Let p € X be an
isolated singularity, let A € k[X](g). Then A is called an adjoint form of
degree d at p if for every i such that p € X; we have A/x¢ is adjoint at p.
(We note that A/zd € (O;)p.)

Definition 2.20.0. A € k[X](y) is called an adjoint form if A is adjoint at
every singular point of X.

3
Lemma 2.21.0. ,DO(Adj(Xi))Ui =~ Adjoint forms of degree n — 4 as k-

veclor spaces.



46 Joseph Blass, Piotr Blass and Jeff Lang

Proof. Suppose A is an adjoint form of degree n — 4 in k[X]. We have by
(2.18.0)

A A AN A
— = ——— (x_) 0} = ——00 for 0<z2,7<3.

n—4"1% n—4 K n—4
T z; Ty g

Let o(A) denote the differential in Qz(X)/k that is equal to

A A A A
0g = g1 = 09 = J3.
n—4 n—4 n—4 n—4
Zg z Zy Z3

3
Clearly o(A) € ,DO(Adj(Xi))Ui and o defines a k-linear injective map from
adjoint forms of degree n — 4 to 60(Adj (Xi)oi.

3
Let 8 € ,DO(Adj(Xi))Ui~ Write 8 = agoo = a101 = as0s = a303,a; €
Adj(X;). We have a;0; = a;(x;i/x;)""to; = ajoj, so that a;(x;/x;)"~* =
a;. This implies the existence of a unique form A of degree n — 4 in k[X]
such that A/2?* = a;. Then ¢(A) = a;o; = 3, i = 0,1,2,3. Thus ¢ is
surjective and hence a k-vector space isomorphism. a

Lemma 2.22.0. Let X = X be any desingularization of X. Then mo:

5 5 , ,
HEY — Qk(X)/k defines an isomorphism of k-vector spaces

T w;(}?) = ﬂ (Adj(X;))oi.

i=0

Proof. Let X; = 771(X;). Since 75 is a monomorphism, the only thing to

compute is 72(w(¥)). m(wz() = m( 0 wz(F) = 0 mlwzp(F) =

3
DO(Adj (X))o (the first equality is by (2.6.1), the second is by the one-to-
oneness of wg, the last equality is by (2.16.0).) O

Theorem 2.23.0. The following two k-spaces are isomorphic:

wj(v()?) ~ Adjoint forms of degree n — 4 in k[X].

Proof. By (2.21.0) and (2.22.0). O

Proposition 2.24.0. Let X C P3 be as above. Assume (2.17.1) after
renumbering variables. Let mX — X by any desingularization of X. Let
p € X be an isolated singularity. Let A € k[X]a). Let X; = 7 1(X;). The
following conditions are equivalent:

a) A is adjoint at p.
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b) For alli=0,1,2,3 such that p € X;,

” (éa) € Regie(v™(p)).

)

¢) For some i =0,1,2,3 such that p € X;,

- (ia) € Regi((p)).

)

d) For some i = 0,1,2,3 such that p € X;, A/x? is adjoint at p as an
element of (Og,)p.

Corollary 2.24.1. Retain the notations of (2.24.0). Assume p € Xy; then
A is adjoint at p if and only if A(1,y1,y2,y3) is adjoint at the point of

kly1, yo, ys)

Hy = Spec —————
0 (F(laylayZayS))

that corresponds to p. Similarly if p € X1, Xa, or X3, with Hy replaced by
Hy, Hy, or Hs, and A suitable dehomogenized.

Remark 2.24.2. (2.24.1) means that in order to check whether A is an
adjoint form we can dehomogenize the equation of X and A and reduce to
an affine hypersurface case.

Proof of Proposition 2.24.0. Let )?Z =7 1(X;).
(a)=-(b): Assume (a). For every i such that p € X,

mi (%) € Resg, (774 0) = Reg (1)
b)=(a)
b)=(c)
O)=(d)
)=>(b)

=

Also follows since Regy (7= Y(p)) = Regg(ﬁ_l(P))~
Obvious.

Follows trivially from the definition of adjoints.
Assume (c). Let j #4, p € X,

A i \"" A
m|—o; | =7 — —0;
)T\ ) o

P

¢
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Since we assume (c), it is enough by (2.5.0) to see that m1((z;/2;)"~*%)
is regular on 771(p). But (z;/z;)""*7% € (O,), since p € X; N X;, so (b)
follows. d

Remark 2.24.3. If ¢ is any form of degree 1 such that g(p) # 0, A is
adjoint at p if and only if A/¢g¢ is adjoint to X,4. Hence the definition of
adjoint forms is invariant under a linear change of coordinates.

Theory of £-Adjoints for £> 1 (An Outline)

We shall use notations from the theory of adjoints. We consider
Qz%ﬁ)/k, ® over k(X). We define £ — Regx(p) = {elements of Qz%ﬁ)/k
of the form Xe;p;, where p; = (dajidbin) @ (dajadbiz) @ -+ @ (dajedbiy)
and ¢;,a;5,b;; € Op}. We define for each £>1 a sheaf { — wx(U) =
e ¢ — Regx(p).

Proposition 2.25.0. { —wx (U) is an Oy-module.

Proposition 2.26.0. { — wx (U) is canonically isomorphic to w?}z. From

now on {—wyx and W, and {— Regx (p), Reg2%(p) will be used interchange-
ably.
w?}z has an analogous theory to wx. Propositions (2.3.0) - (2.8.9)

have obvious analogues for w?}z. In particular, we note for F C A% as in

(2.8.3) and (2.9.0) we have for U C F:
Proposition 2.27.0. W%Z(U) = OF(U)O'%Z.

Definition 2.28.0. Let ' C A% and p € F be as in (2.13.0), F—Fa

resolution of p. An element a € (OF), is said to be £-adjoint if and only if
wl(aagz) =m(a)- 71'1(01?3[) = mi(a) (m1(op))®* is regular along 7~ 1(p).
Again Propositions (2.13.0) - (2.16.0) have obvious analogies for (-

adjoints. A new fact is the following.

Lemma 2.28.1. Let p € F C A3 be as in (2.19.0). If ay is {1-adjoint and
ay 18 Uo-adjoint at p, then ajas is €1 + £o adjoint at p.

Proof. Immediate from the definition.
Passing to the projective case, let X C P3 be as in (2.17.0).

Definition 2.29.0. A € k[X]q) is (-adjoint at p € X if A/x¢ is (-adjoint
on the scheme X; at p for each ¢ such that p € X;.

Definition 2.30.0. A is f-adjoint to X if A is f-adjoint at all singular
points of X.

Again we obtian propositions analogous to (2.24.0) - (2.24.3). The
key difference is the following.

Remark 2.31.0. O'i@z = (a:i/xj)z(”_‘l)a}w, which is a consequence of
(2.18.0).

Exactly as in the theory of adjoints we prove:
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Theorem 2.32.0. HO()?,W%Z) 1s 1somorphic as a k-vector space to the
space of L-adjoint forms of degree £(n — 4).

Proposition 2.33.0. Let Ay be an {1-adjoint form of degree dy (at p), Az
be an £a-adjoint form of degree da (at p). Then Ay Az is an €y + €o adjoint
form (at p) of degree dy + da.

Valuation Theory for Differentials

We need only deal with the case of a normal hypersurface F C A3,
F = Spec(R) where R = k[z,y,2]/(f(x,y,2)). Choose a canonical gen-
erating differential op. Let v be a discrete valuation of k(F') that corre-
sponds to a height one prime ideal of . We extend v to Qz(F)/k by setting
v(a) = v(a) where a = aop.

This is clearly independent of the choices of op as v is equal to 0 on
units of R.

Proposition 2.34.1. « € Qz(F)/k 1s reqular on F if and only if for every
valuation v corresponding to a height one prime of R, v(a) > 0.

Proof. Set « = aop. « is regular on F' if and only if a € R; that is, if and
only if v(a) > 0 for all v as in the proposition; but v(«) = v(a) for all such
valuations by definition. a

Lemma 2.35.0. Let X be a smooth surface. Then any pownt p € X has
an affine neighborhood U(p) with the following properties:
(a) U(p) = Spec(R), R C k(X), R has fraction field k(X); R is regular.
(b) wx|u(p) s free on one generator o € Qz(X)/k; ie., if V.C U then
wx (V) = Ox(V)ogr is a free Ox(V)-module on one generator. In
particular, wx (U(p)) = Rog.
Proof. In this case wx is the sheaf of Kahler differentials and the result is
well known; for example see [12], p. 335.

Propositon 2.36.0. Let I be isomorphic to a hypersurface in A%; F is
normal. Let p € I be an 1solated singularity. Then the ideal of adjoints
Adj(p) C (OF), is integrally closed.

Proof. Let m: F' — F be a desingularization. Suppose Adj(p) is not inte-
grally closed. Then for some r € (Op), — Adj(p),

a4 ta, =0, (1)

where a; € [Adj(p)]*, 1 <i<n. Let op be a canonical generating differential
on F. mi(rop) fails to be regular at some point ¢ € 771(p). Choose a

neighborhood U(q) = Spec(R) of ¢ in F with R C k(ﬁ) as in (2.35.0).
Then
m1(or) = yoR, where v E k(ﬁ),

m1(rop) = m(r) - yor,
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SO

71(r) -y ¢ R.
On the other hand, if « € Adj(p), then m1(a) -y € R. Since R is normal,
there exists a discrete valuation v such that
v(mi(r) -y) = v(m(r)) +v(y) <0 (2)

whereas v(wy(a)) + v(y) > 0 if a € Adj(p).

If a; € [Adi(p)]",

v(mi(ai)) +iv(y)2 0. (3)

We prove that (1), (2), (3) are incompatible. Apply m; to (1) to obtain

(m1(r)" = =mi(an)(m(r)" ™ = mi(az)(m(r)" " = mi(an).

Applying v to both sides yields

no(m(r) 2 v(m(ai,) - (m1(r)"7"0) = v(mi(ai,)) + (0 do)u(mi(r))

for some
1<ig<m; SO i v(mi(r)) > v(m(as,)).

By (3), v(m1(aiy)) > —to v(y). Sodgv(mi(r)) > —ig v(y) or v(mi(r)) > —
v(7), so v(m1(r)) + v(T') > 0 which contradicts (2). O

Remark 2.37.0. Similarly, we can extend valuation theory to (Qi(F)/k)@)Z
by setting v(ac®?) = v(a). For a € (Q%(F)/k)@)z we again have that « is
regular on F if and only if v(a) >0 for all valuations as in Proposition

2.34.1.

References

1. S.S. Abhyankar, Local uniformation on algebraic surfaces over ground

fields of characteristic p # 0, Ann. of Math. 63 (19), pp. 491-526.

2. M. Artin, On isolated rational singularities of surfaces, Amer. J.

Math. 88 (1966), p. 129.
3. P. Blass, Zariski Surfaces, Thesis, University of Michigan, 1977.

4. P. Blass and J. Lipman, Remarks on adjoints and arithmetic genera

of algebraic varieties, Amer. J. Math. 101 (2) (1979), pp. 331-336.

5. F. Enriques, Le superficie Algebriche, Nicola Zanichelli Editore,
Bologna, 1949.



10.
11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

Zariski Surfaces: Part I 51

H. Grauert and O. Riemenschneider, Verschwindungssatze fir an-
alytische Kohomologie-grupen auf komplexen Raumen, Inventiones

Math. 11 (4) (1970), p. 271.

S. Lang, Abelian Varieties, Interscience Tracts, in Pure and Applied
Mathematics, No. 7, New York.

W. E. Lang, quasi-elliptic surfaces in characteristic three, Thesis, Har-
vard University, 1978.

J. Lipman, Rational Singularities, THES Publications, No. 36.
J. S. Milne, Etale cohomology, Princeton University Press, 1966.

D. Mumphord, Lectures on curves on an algebraic surface, Ann. of
Math. Studies, No. 59, Princeton University Press, 1966.

D. Mumphord, Introduction to Algebraic Geometry, Harvard Lecture
Notes, p. 335.

M. Nagata, Local rings, Interscience Tracts, in Pure and Applied
Mathematics 13.

Y. Nakai, On the characteristic linear system of algebraic families,

111, J. Math. T (1957), pp. 552-561.

I. Safarevic, Minimal Models, Tata Institute of Fundmental Research,

Bombay, 1966.
I. Safarevic, Basic Algebraic Geometry, Springer, 1974.

J. P. Serre, Faisceaux algébrique coherent, Ann. of Math. 61 (1955),
pp. 197-278.

O. Zaniski, Introduction to the problem of minimal models in the
theory of algebraic surfaces, Publ. Math. Soc. Japan 4 (1958).

O. Zariski, The problem of minimal models in the theory of algebraic

surfaces, Amer. J. of Math. 80 (1958).

0. Zariski, On Castelnuovo’s Criterion of Rationality p, = P> = 0 of
an algebraic surface, III, J. of Math. 2 (3) (1958).

Please note: This copyright notice has been revised and varies
slightly from the original statement. This publication and
its contents are ©copyright Ulam Quarterly. Permission is
hereby granted to individuals to freely make copies of the
Journal and its contents for noncommercial use only, within
the fair use provisions of the USA copyright law. For any use
beyond this, please contact Dr. Piotr Blass, Editor-in-Chief
of the Ulam Quarterly. This notification must accompany
all distribution Ulam Quarterly as well as any portion of its
contents.



