
Ulam Quarterly | Volume 2, Number 2, 1993Zariski SurfacesPart IDe�nition and General Properties. The Theory of AdjointsJoseph BlassDepartment of MathematicsBowling Green State UniversityBowling Green, OH 43403Piotr BlassDepartment of MathematicsPalm Beach Atlantic CollegeWest Palm Beach, FL 33416andJe� LangDepartment of MathematicsUniversity of KansasLawrence, KS 66045x0. IntroductionIn the classical case all unirational surfaces are rational. This was�rst realized by Oscar Zariski ([20], p. 314). Prompted by Hironaka'ssuggestion, we began an investigation of the type of surfaces introduced byZariski in that paper. The research was originally begun by Blass in 1970-71 at Harvard with the advice of Hironaka and Zariski, and then during1974{1977 he continued under the direction of J. S. Milne and M. Hochsterat the University of Michigan. The two remaining authors entered thisstudy a bit later.A smooth algebraic surface X de�ned over an algebraically closed�eld, k, of characteristic p > 0 is called a Zariski Surface (or ZS) if andonly if there exists two elements x, y in the function �eld of X, denotedk(X), that are algebraically independent over k and such thatk(x; y) � k(X) � k(x1=p; y1=p):The main results of the paper are as follows. First of all, section 3answers a question posed by Zariski in 1970-71. He asked whether a ZS34



Zariski Surfaces: Part I 35with vanishing geometric genus, pg , is necessarily rational. A long coun-terexample is given in section 3. Secondly, in section 5 it is shown that thevalue of pg is unbounded over an algebraically closed �eld of characteristiclarger than or equal to 5. This, together with some other results in section3, illustrates the richness of the class of ZS.In section 4 a more detailed study is made of a particularly simplesubclass of ZS's which we call \generic" ZS's. (A generic ZS is a smoothminimal model of the function �eld of a hypersurface given by zp = f(x; y)where f has degree p + 1 and the hypersurface has only the simplest sin-gularities.) We determine pa, pg, P2, K2 for a generic Zariski surface aswell as the rank of the N�eron-Severi group � and the e'tale Betti numbers,bi. Using \generic Zariski surfaces", we give examples of ZS's which are ofgeneral type and K3. Trivially there also exist rational ZS's.All Zariski surfaces are unirational and consequently supersingular,i.e., � = b2. Thus the richness of the class of ZS's in characteristic p > 0 isin sharp contrast to the situation in characteristic 0 where every unirationalsurface is well known to be rational.The principal technical tool used in the paper is the theory of adjointsand multi-adjoints. This theory deals with the inuence of singularities ondi�erential forms and is classical. However, since no reference could befound for the results that we needed, a self-contained exposition of thefacts from the theory that we use is given in section 2. We develop thetheory of adjoints for a normal, two-dimensional hypersurface in a�ne orprojective 3-space. The results about adjoints are proved over an arbitraryalgebraically closed �eld of arbitrary characteristic.ZS's are an interesting subclass of unirational surfaces. Among themany open problems concerning ZS's, we mention two very concrete ones.The �rst one is to answer Zariski's questions in characteristic p > 0. Thesecond one is whether H1(X;OX) can be nontrivial for a Zariski surface X.Added in revision: W. E. Lang gave an example of a ZS withH1 nontrivial.He also settled by another example Zariski's question in characteristic 3 [8].Notation.k { algebraically closed �eld of characteristic p > 0, unless stated to thecontrary.An { a�ne n-space over k.Pn { projective n-space over k.Surface { irreducible, reduced, quasi-projective variety over k.If X denotes a surface then k(x) denotes its function �eld.For a smooth surface X we will write as usual:pg = geometric genus of X = dim H2(X;OX).pa = arithmetic genus of X = pg � dim H1(X;OX).pi = dim H0(X;K
i), where K is the canonical line bundle on X.p1 = pg by Serre duality.q = dim of the Picard variety of X = dim of the Albanese variety of X.



36 Joseph Blass, Piotr Blass and Je� LangThe notation:F : f(x; y; z) = 0 means F = Spec k[x;y;z](f(x;y;z)) ; F � A3. If F (x; y; z; z0)is a homogeneous form:�F :F (x; y; z; z0) = 0 means �F = Proj k[x;y;z;z0](F (x;y;z;z0)) ; �F � P 3.If X is a surface we denote by Sing(X) the subscheme consisting of singularpoints of X. X0 denotes X � Sing(X). A desingularization of X is aproper, birational surjective morphism �: eX ! X satisfying the followingtwo conditions:i) eX is smooth, andii) ��1(X 0) �j��1 (X0)������! X 0 is an isomorphism.If X is a surface and p 2 X is a closed point, then we refer to blowing upthe point p as \quadratic transformation with center p".Let I be an ideal in a ringR. r 2 R is said to be integrally independenton I if there exists an equationrn + a1rn�1 + a2rn�2 + � � �+ an = 0 with ai 2 Ii:I is integrally closed if it contains all elements of R integrally dependent onI (see [13], p. 34). The reader is referred to ([2], [9]) for the de�nition andbasic properties of rational singularities.x1. Zariski Surfaces: de�nition and general propertiesZariski surfaces are de�ned and some of their simplest properties aregiven in this section. X denotes a smooth projective surface over k, k(X)is the function �eld of X, and k = �k, char(k) = p > 0.De�nition1.1.0. A smooth projective surface X is called a Zariski surfaceif there exists two elements x, y in k(X) that are algebraically independentover k such that k(x; y) � k(X) � k(x1=p; y1=p).Remark 1.1.1. Unless one of the inclusions in (1.1.0) is an equality, theextensions k(X) over k(x; y) and k(x1=p; y1=p) over k(X) are both purelyinseparable of degree p.Remark 1.1.2. We propose to call a surface a singular Zariski surface ifit satis�es (1.1.0) but is not necessarily smooth.Remark 1.1.3. De�nition (1.1.0) is birational, i.e., it depends only on thefunction �eld; thus any smooth projective surface birationally equivalentto a Zariski surface is itself a Zariski surface. Two surfaces are birationallyequivalent if they have isomorphic function �elds over k.Remark 1.1.4. A Zariski surface is unirational by de�nition.Notation 1.1.5. We shall sometimes abbreviate \Zariski surface" by ZS.



Zariski Surfaces: Part I 37Proposition 1.2.0. X is a Zariski surface if and only if X is birationallyequivalent to a hypersurface in A3 de�ned by an irreducible equation of theform zp � f(x; y) = 0 where f(x; y) 2 k[x; y], the polynomial ring in twovariables over k.Proof. Suppose that X is birationally equivalent to Spec (k[x; y; z]=(zp �f(x; y)) with zp � f(x; y) irreducible. Then k(X) �= k(�x; �y; �z) where �x, �y,�z are the residue classes in k[x; y; z]=(zp � f(x; y)) of x, y, z, respectively.We have, by standard �eld theory,k(x; y) �= k(�x; �y)  k(�x; �y; �z):Since �z = f1(�x1=p; �y1=p), where f1 is obtained from f by taking p-throots of all the coe�cients, we have k(�x; �y; �z) � k(�x1=p; �y1=p). Since [k(�x;�y): k(�x1=p; �y1=p)] = p2 and �zp 2 k(�x; �y), we see that k(�x; �y) * k(�x; �y; �z) *k(�x1=p; �y1=p), so that X is a ZS.Suppose next that X is a Zariski surface. Then there exists x; y 2k(X) such that k(x; y) � k(X) � k(x1=p; y1=p). If either containment is notproper, then k(X) is birationally equivalent to the hypersurface F : zp � x.Thus, we may assume that both containments are proper. Let z 2 k(X) �k(x; y). Then zp = w(x; y)=v(x; y) with w; v 2 k[x; y] and w=v not a p-th power of an element in k(x; y). zp = w=v implies zp1 = wvp�1 wherez1 = z � v 2 k(X) � k(x; y). Since w=v is not a p=-th power in k(x; y),niether is wvp�1 a p-th power in k[x; y]. Since k(x; y)  k(x; y; z1) � k(X)and [k(X): k(x; y)] = p, we obtain k(X) = k(x; y; z1). It follows that X isbirationally equivalent toSpec k[�x; �y; �z1](�zp1 �w(�x; �y)v(�x; �y)p�1)where �x, �y, �z1 are indeterminants and the equation is irreducible. �Proposition 1.3.0. Given any irreducible, reduced hypersurface in A3,F : zp = f(x; y), there exists a Zariski surface eF birationally equivalent toF .Proof. Let �F be the closure of F in P3. Let eF be a desingularization of �F ,which Abhyankar proved exists [1]. Then eF is a smooth projective surfacewhich is birationally equivalent to F so it is a ZS by (1.2.0).Remark 1.3.1. F , �F , eF will often be given the above meaning throughoutthe paper.Remark 1.3.2. eF is not unique. However, if we require eF to be a relativelyminimal model of k(F ) then eF will be unique unless eF is ruled or rational([18], [19]). It will be proved later that q = dim Alb( eF ) = 0 (see (1.6.0)),where Alb( eF ) denotes the Albanese variety of eF . It follows that eF ruledimplies eF rational.



38 Joseph Blass, Piotr Blass and Je� LangProposition 1.4.0. Let t1, t2 be indeterminates. Let L be a �eld withk(t1; t2) � L � k(t1=p1 ; t1=p2 ). Then there exists a ZS X with k(X) � L.Proof. Replace k(X) by L in the proof of the \only if" direction of Propo-sition (1.2.0) to obtain a hypersurface F : zp = f(x; y) with k(F ) �= L. Nowuse (1.3.0). �Proposition 1.5.0. Let k be as above, t1, t2 indeterminates over k. LetL be the set of all �elds L such that k(t1; t2) � L � k(t1=p1 ; t1=p2 ). Let PSbe the set of all (projective smooth) Zariski surfaces over k. We have aone-to-one correspondenceL=(�eld isomorphisms over k)$ PS=(birational equivalence):Proof. By (1.4.0) and the de�nitions. �Remark 1.5.1. We shall use (1.5.0) to show that the set L= (�eld isomor-phisms over k) is in�nite when p�5 (see (5.1.2).)Lemma 1.6.0. The dimension of the Albanese variety of a Zariski surfaceis 0. In fact, the Albanese variety is trivial.Proof. Since Zariski surfaces are unirational, the proof follows from B.Lang ([8], corollary, p. 25), where a unirational variety is semi-pure. �Lemma 1.7.0. The Picard variety of a Zariski surface is trivial.Proof. Let eF be a Zariski surface. By (1.6.0) the Albanese variety of eF ,Alb( eF ), is trivial. The Picard variety of eF is the same as that of Alb( eF )(Lang, [8], p. 148, Theorem 1), but the Picard variety of the trivial varietyis trivial. �Proposition 1.8.0. If a non-singular Zariski surface eF satis�es P2( eF ) =0, then eF is rational.Proof. This proof is adapted from [20], p. 314 and is given here for thereader's convenience. By (1.6.0) and (1.7.0) dim Alb( eF ) = dim Picardvariety of eF = 0. Also P2( eF ) = 0 implies pg = 0. Nakai has shown that ifpg = 0 then the dimension of the Picard variety is equal to the dimensionof H1( eF;OeF ) (see [14], Theorem 5). Thus pg � pa = dim H1( eF;OeF ) = 0and hence pa = pg = 0. Also P2 = 0 by assumption and the rationality ofeF follows from Castelnuovo's criterion of rationality (see [20]). �Proposition 1.9.0. Let X be a ZS. Let bi = rank of Hiet(X;Q`) where` 6= p. Then b0 = b4 = 1 and b1 = b3 = 0.Proof. Since q = dim Alb(X) = 0, the proposition follows from [10], Ch.V and Ch. VI.11. �



Zariski Surfaces: Part I 39Remark 1.10.0. Using the method of proof of p. 286 of [15], one can showthat the e'tale fundamental group of a Zariski surface is trivial.x2. The Theory of AdjointsThe theory of adjoints is well known and classical for algebraic curves.For surfaces it was developed by Clebsch, M. Noether, the Italian geometersand Zariski. However, it is di�cult to �nd a complete rigorous treatment ofthe theory for a two-dimensional, normal, hypersurface. Without a doubtthat theory has been well known to several writers in the theory of algebraicsurfaces, but no reference could be found for the proofs of the results theyused. It is the purpose of this section to �ll this gap. The treatment hererelies only on rudiments of sheaf theory. For a more homological treatmentof adjoints see [4]. We also discuss briey the notion of multiadjoints andconnections with plurigenera { a favorite topic with Enrique's but again amodern reference is missing. The theory of adjoints and multiadjoints isour principal tool in all later sections.Throughout this section, k will be an algebraically closed �eld of anycharacteristic. All surfaces will be assumed to be quasiprojective, irre-ducible and reduced. Surfaces will be denoted by capital letters V , W , X,Y , etc. k(X) denotes the function �eld of a surface X. 
1k(x)=k, 
2k(x)=kare the K�ahler di�erentials of k(X) over k (respectively, two-forms). Theletters p, q always denote closed points.Proposition 2.1.0. 
2k(x)=k is a one-dimensional vector space over k(X).If a; b 2 k(X) are a separating transcendence basis, da db 6= 0 in 
2k(X)=kand da db is a basis over k(X) (d: k(X) ! 
2k(X)=k denotes the usual dif-ferential map).Proof. Well known.Remark 2.1.1. a 2 k(X), � 2 
2k(X)=k, a 6= 0, � 6= 0 implies a � 6= 0 in
2k(X)=k.Let X be a surface and X 0 = X � SingX. If p 2 X0 is a closed point,we de�ne a subset of 
2k(X)=k which we shall call RegX (p) as follows:De�nition 2.1.2. � 2 RegX (p) if and only if � = �aidbidci, with ai; bi; ci2 (Ox)p, where (Ox)p is the local ring of p.Proposition 2.2.0. If p 2 X 0 then RegX (p) is an (Ox)p-module. It is freeof rank one. If tp, t0p are a regular system of parameters at p then dttdt0p isa generator of RegX (p) as an (Ox)p-module.Proof. Well known.Using the above notions we proceed to de�ne a sheaf !X on X whichis isomorphic to the sheaf of K�ahler two-forms if X is smooth. In the



40 Joseph Blass, Piotr Blass and Je� Langgeneral case considered here !X = j� (sheaf of K�ahler two-forms on X0)where j:X0 ! X is an open immersion.First we de�ne a presheaf of subsets of 
2k(x)=k. Let U � X be open;de�ne !X(U ) = \p2U 0RegX(p):If V � U , !X(V ) � !X (U ) and we de�ne the restriction map �uv :!X(U )!!X (V ) to be the inclusion map.Proposition 2.3.0. !X is a sheaf of Ox-modules. All restriction maps aremonomorphisms and k-linear.Proof. !X is clearly a presheaf of Ox-modules. To see that !X is a sheaf,assume V = [i2I Vi is an open cover of an open subset V of X and �i 2!X (Vi) such that �ijvi\vj = �jjvi\vj for each i; j 2 I. Then this impliesthat �i = �j in !X (Vi \ Vj), for each i; j 2 I. For a �xed i this yields�i 2 !X (Vj) and �i = �j for all j 2 I. Thus �i 2 \j2I !X(Vj) = !X(U ) and�ijvj = �j. Therefore !X is a sheaf of Ox-modules as well. �De�nition 2.4.0. Let X � X0. De�ne !X(S) = \q2S RegX(q).Note 2.5.0. If a 2 \q2S(OX )q, then a!X (S) � !X (S).Behavior of !X Under Restriction to Open SubschemesProposition 2.6.0. Suppose U is a nonempty open subset of a surface X.We identify k(U ) = k(X) and 
2k(U)=k = 
2k(X)=k. Then !u(V ) = !X (V )for each V � U .Proof. The �rst equality is trivial; the second follows from (2.6.0). �Behavior of !X Under Certain Birational MapsDiscussion 2.7.0. Let W , Z be surfaces. Let W ��! Z be a birationalmap satisfying the following condition��1(Z0) �j��1 (Z0)������! Z 0 is an isomorphism:Then we have an isomorphism k(Z) �1�! k(W ) and �1 induces an isomor-phism 
2k(Z)=k �1�! 
2k(W )=k of k-vector spaces. We denote the inverseisomorphism by �2, so that 
2k(W )=k �2�! 
2k(Z)=k.Proposition 2.8.0. Let W ��! Z be as in (2.7.0). Then �2(!W (��1(U )))� !z(U ) for every open U � Z.Proof. Let U � Z be open. Since ��1(Z 0) ! Z0 is an isomorphism �2maps !W (��1(U 0)) isomorphically onto !z(U ) by (2.6.0). The result now



Zariski Surfaces: Part I 41follows from the fact that ��1(U ) � ��1(U 0) and the restriction maps on!W are inclusions. �Remark 2.8.1. �2:!W (��1(U ))! !z(U ) is a monomorphism of k-vectorspaces. In fact, �2 de�nes a monomorphism of Oz-modules ��!W  !z.A�ne Case, AdjointsAssumption 2.8.2. Let us assume that F � A 3 is a normal, irreducible,reduced hypersurface. Throughout this subsection F will have this mean-ing. Let us describe !F .Proposition 2.9.0. There exists a di�erential �F 2 !F (F ) such that forevery U � F open, !F (U ) = OF (U )�F � 
2k(F )=k is a free OF (U )-moduleon one generator, �F , and such that for every point p 2 F 0, �F 2 RegF (p)and RegF (p) is a free (OF )p-module on one generator, namely �F .The di�erential �F is unique up to multiplication by a unit in OF (F ).�F will be called a canonical generating di�erential (abbreviated c.g.d.) onF . Moreover, if we write F = Spec k[x1; x2; x3]=(f(x1; x2; x3)) and @f@xi 6� 0then we may take �F = dxjdxk@f=@xi , i, j, k distinct.Proof. The proposition is well known, see for instance [16], Ch. III, x5.4,where non-singularity is assumed but is not essential to the proof.Remark 2.10.0. �F 6= 0.Lemma 2.11.0. a =2 (OF )p implies a�F =2 RegF (p).Proof. Suppose a�F 2 RegF (p). Then a�F = a0�F , a0 2 OF (p). Then(a � a0)�F = 0, hence a� a0 = 0, which shows a 2 (OF )p. �De�nition 2.12.0. Let F be as in (2.8.2). Let p 2 F be an isolatedsingular point. Let eF ��! F be any map such thata) � is birational and proper.b) �j��1(F 0) is an isomorphism.c) ��1(p) � eF 0.We call � a resolution of p in F .De�nition 2.13.0. Let F , p be as in (2.12.0). Let �F be a canonicalgenerating di�erential on F . We call a 2 (OF )p an adjoint (locally) at p ifthere exists a resolution eF ��! F of p in F such that �1(a�F ) is regular on��11 (p) (or, equivalently, �1(a�F ) 2 RegeF (��1(p))).Remark 2.13.1. Let �0F be another generating di�erential on F . We have�0F = u�F , u 2 OF (F ) a unit; then �1(a�0F ) = �1(u)�1(a�F ). Since �1(u)is regular on ��1(p), �1(a�0F ) is regular on ��1(p). This shows (2.13.0) isindependent of the choice of �F .



42 Joseph Blass, Piotr Blass and Je� LangProposition 2.14.0 (Independence of the resolution). Again, let F , p beas in (2.12.0) and let a 2 Op be an adjoint at p. Let G ��! F be any reso-lution of p in F ; then for any choice of a canonical generating di�erential�F , we have �1(a�F ) 2 Reg(��1(p)).Proof. Consider an open neighborhood V of p such that V = V 0[fpg. LeteF ��! F be a resolution as in (2.13.0), which arises from a 2 (OF )p being anadjoint. Let V1 = ��1(V ), V2 = ��1(V ); V1, V2 are smooth. We have thefollowing diagramwhere Z is a desingularization of (V1�V2)red. It is easy tosee that r and s are both birational and proper. If �1(a�F ) =2 Reg(��1(p)),then �1(a�F ) has a polar curve on V1. By ([15], page 55), r is a compositionof �nitely many quadratic transforms with point centers. Thus r1�1(a�F )cannot be regular on� V2)redZ sr V1
V2 �� VHowever, since �1(a�F ) is regular on V2 and s is everywhere de�ned,we see that s1�1(a�F ) is regular on Z. But r1�1(a�F ) = s1�1(a�F ); acontradiction. �Remark 2.14.1. The above argument is adapted from the one used byGrauert-Reimenschneider in the analytic case ([6], p. 271).Remark 2.14.2. If G is isomorphic to an a�ne normal surface F � A3, wecan de�ne in the obvious way what is meant by an adjoint at an isolatedsingularity of G. One easily sees that this notion is independent of thechoice of F and of the isomorphism.Theorem 2.15.0. Let G be isomorphic to F � A3, F as in (2.8.3). Letp 2 G be an isolated singularity. Then the adjoints in (OG)p form an idealof �nite co-length. Moreover, if G = F : f(x1; x2; x3) = 0, then @f=@xi isadjoint for every i = 1; 2; 3.Proof. We may assume G = F and F = Spec k[x1;x2;x3](f(x1;x2;x3)) . Let �: eF ! Fbe a resolution of p in F . The partial @f=@xi is adjoint if @f=@xi � 0. If@f=@xi 6� 0, then �(i)F = dxjdxk@f=@xi is a canonical generating di�erential on F ,



Zariski Surfaces: Part I 43for 05 i; j; k5 3 all distinct. Then we have (@f=@xi) � �(i)F = dxjdxk. Sincexj ; xk 2 (OF )p, �1(xj); �1(xk) 2 \q2��1 (p)(OeF )q :Thus �1((@f=@x1)�(i)F ) = d�1(xj)d�1(xk) 2 RegF (��1(p));which shows that @f=@xi is adjoint.Let us show that the adjoints in (OF )p form an ideal. The proof isstandard. Suppose a; b 2 (OF )p and b is adjoint. For any canonical gener-ating di�erential �F , �1(ab�F ) = �1(a)�1(b�F ). Since �1(a) is regular on��1(p) and �1(b�F ) 2 RegF (��1(p)) by (2.14.0), �1(ab�F ) 2 RegeF (��1(b))and ab is adjoint.If a, b are adjoint in (OF )p, then a+ b is trivially. Thus the adjointsform an ideal in (OF )p which we will call Adj(p). Since p 2 F is an isolatedsingularity, the ideal Jp = (@f=@x1; @f=@x2; @f=@x3) has �nite co-length.Since Jp � Adj(p), the latter has �nite co-length. �Terminology 2.15.1. We call ep = dimk(OF )p=Adj(p)) the Noether-Enriques number of the singularity. It is often denoted p and sometimescalled the \genus". For surfaces this invariant seems �rst to have beenstudied by Max Neother and then taken up by the Italian school; Enriquesdiscussed a number of special cases in his book \le Super�cie Algebriche"[5].Proposition 2.16.0. Let G � X be an open subscheme isomorphic to F �A3 where F is as in (2.8.3). Let �G be a canonical generating di�erential.Let eX be a desingularization of X; eX ��! X;��1(G) = eG. Let Sing(G) =fp1; : : : ; psg. Then �2(!eX( eG)) = (OX (G) \ sTi=1Adj(pi))�G.Proof. We can easily reduce to the case where G = X, G � A3 is a�neand eG ��! G is a desingularization. We need to show�2(!eG( eG)) =  OG(G) \ s\i=1Adj(pi)!�G:Let � belong to the right hand side. Then � = a�G, a 2 OG(G),w herea is adjoint at all the singular points of G. Then �1(_) 2 !eG( eG), so _=�2(�1 _) 2 �2(!eG( eG)). Suppose � 2 �2(!eG( eG)). Then �1(�) 2 !eG( eG).Therefore � is regular on G0, so � 2 !G(G0) = OG(G0)�G. But since Gis normal and G � G0 is a �nite set of points, we have OG(G0) = OG(G).Hence � = a�G with a 2 OG(G). Moreover, since �1(�) is regular on��1(pj), j = 1; 2; : : : ; s, a is adjoint at all the singular points of G, so thata 2 OG(G) \ sTi=1Adj(pj). Thus � belongs to the right hand side above.�



44 Joseph Blass, Piotr Blass and Je� LangFor future reference, in section 3 we introduce the de�nition of anadjoint surface.De�nition 2.16.1. Let F = Spec k[x1;x2;x3](f(x1 ;x2;x3)) be as in (2.8.3). let p 2 Fbe an isolated singularity. Let H = Spec k[x1;x2;x3](A(x1;x2;x3)) be another closedsubscheme of A3. We say H is an adjoint surface to F at p if A(x1; x2; x3)considered as an element in k[F ] is an adjoint of the local ring of F at p.Remark 2.16.2. An \adjoint surface" is not assumed to be irreducible orreduced. It need not be a surface in the sense of this paper.Projective CaseDe�nition 2.17.0. Assume X = Proj k[X0;X1;X2 ;X3](F (X0;X1;X2;X3)) where the degreeof F is n� 4; X is assumed to be reduced, irreducible, and normal. Let usdenote by k[X] = k[x0; x1; x2; x3] the graded ring k[X0;X1 ;X2;X3](F (X0 ;X1;X2;X3)) and byk[X](d), d = 0; 1; 2; : : : , the d-th graded piece of k[X].As usual, we identify k(X) with the set of ratios a=bwhere a; b 2 k[X]dfor some d. X is covered by four a�nesXi = Spec(k[X]xi)0 = Spec k �x0xi ; x1xi ; x2xi ; x3xi � :It is important to note that each of the Xi's is isomorphic to an a�nesurface. Explicitly, we have, for example,X0 � H0 = Spec k[Y1; Y2; Y3](F (1; Y1; Y2; Y3)) = Spec k[y1; y2; y3];the isomorphism of kH0 with k[x1=x0; x2=x0; x3=x0] being given by y1 !x1=x0; y2 ! x2=x0; y3 ! x3=x0; and similarly for i = 2; 3; 4.Since X is reduced and normal, at least two of the partial derivatives@F=@Xi are not identically 0. After renumbering the variables, we mayassume the following condition.2.17.1. @F=@X0 6� 0 and @F=@X1 6� 0 in the polynomial ring k[X0; X1;X2; X3] where the Xi are indeterminates. Then it is easy to show that@F=@X0 and @F=@X1 2 k[X](n�1) are also not identically 0 in k[X].We �x the following canonical generating di�erentials on X0, X1, X2,and X3,�0 = d(x2=x0)d(x3=x0)@F=@X1(1; x1=x0; x2=x0; x3=x0) = d(x2=x0)d(x3=x0)(@F=@X1)=xn�10 ;�1 = d(x3=x1)d(x2=x1)(@F=@X0)=xn�11 ;�2 = d(x3=x2)d(x0=x2)(@F=@X1)=xn�12 = d(x1=x2)d(x3=x2)(@F=@X0)=xn�12 (This second equalityis easily justi�ed. See[16], ch. VII 5.4)�3 = d(x0=x3)d(x2=x3)(@F=@X1)=xn�13 :



Zariski Surfaces: Part I 45Key Computation Lemma 2.18.0. �i = (xi=xj)n�4�j, 0� i; j � 3, in
2k(X)=k.Proof. First compare �0 and �3.�0(x0=x3)n�1 = d(x2=x0)d(x3=x0)@F@X1 (x0; x1; x2; x3) � 1xn�13= d�x2=x3x0=x3� d� 1x0=x3�@F@X1 (x0; x1; x2; x3) � 1xn�13= 1(x0=x3)4 ((x0=x3)d(x2=x3)� (x2=x3)d(x0=x3))(�d(x0=x3))@F@X1 (x0; x1; x2; x3) � 1xn�13= � 1(x0=x3)3 d(x2=x3)d(x0=x3)@F@X1 (x0; x1; x2; x3) � 1xn�13= 1(x0=x3)3�3;so that �0 = (x0=x3)n�4�3 in 
2k(X)=k. The veri�cation that �0 = (x0=x2)n�4�2 is similar.To compare �0, �2, �3 with �1, recall that�2 = d�x1x2� d�x3x2�@F@X0 =xn�12 ; �1 = d�x3x1�d�x2x1�@F@X0=xn�11 :Proceed as above to show that �2 = �x2x1�n�4 �1. We then have that�0=�x0x3�n�4 �3=�x0x2�n�4 �2=�x0x2�n�4�x2x1�n�4 �1=�x0x1�n�4 �1:Thus �i = � xixj �n�4 �j, 0� i; j � 3. �De�nition 2.19.0. Assume X to be as in (2.17.0). Let p 2 X be anisolated singularity, let A 2 k[X](d). Then A is called an adjoint form ofdegree d at p if for every i such that p 2 Xi we have A=xdi is adjoint at p.(We note that A=xdi 2 (Ox)p.)De�nition 2.20.0. A 2 k[X](d) is called an adjoint form if A is adjoint atevery singular point of X.Lemma 2.21.0. 3\i=0(Adj(Xi))�i �= Adjoint forms of degree n � 4 as k-vector spaces.



46 Joseph Blass, Piotr Blass and Je� LangProof. Suppose A is an adjoint form of degree n� 4 in k[X]. We have by(2.18.0)Axn�4i �i = Axn�4i �xixj�n�4 �j = Axn�40 �0 for 0� i; j � 3:Let �(A) denote the di�erential in 
2k(X)=k that is equal toAxn�40 �0 = Axn�41 �1 = Axn�42 �2 = Axn�43 �3:Clearly �(A) 2 3\i=0(Adj(Xi))�i and � de�nes a k-linear injective map fromadjoint forms of degree n� 4 to 3\i=0(Adj(Xi))�i.Let � 2 3\i=0(Adj(Xi))�i. Write � = a0�0 = a1�1 = a2�2 = a3�3; ai 2Adj(Xi). We have ai�i = ai(xi=xj)n�4�j = aj�j, so that ai(xi=xj)n�4 =aj . This implies the existence of a unique form A of degree n � 4 in k[X]such that A=xn�4i = ai. Then �(A) = ai�i = �, i = 0; 1; 2; 3. Thus � issurjective and hence a k-vector space isomorphism. �Lemma 2.22.0. Let eX ��! X be any desingularization of X. Then �2:
2k(eX)=k ! 
2k(X)=k de�nes an isomorphism of k-vector spaces�2:!eX( eX) ��! 3\i=0(Adj(Xi))�i:Proof. Let eXi = ��1(Xi). Since �2 is a monomorphism, the only thing tocompute is �2(!eX( eX)). �2(!eX( eX)) = �2( 3\i=0!eX( eXi)) = 3\i=0�2(!eX( eXi)) =3\i=0(Adj(Xi))�i (the �rst equality is by (2.6.1), the second is by the one-to-oneness of �2, the last equality is by (2.16.0).) �Theorem 2.23.0. The following two k-spaces are isomorphic:!eX( eX) ' Adjoint forms of degree n� 4 in k[X]:Proof. By (2.21.0) and (2.22.0). �Proposition 2.24.0. Let X � P3 be as above. Assume (2.17.1) afterrenumbering variables. Let �: eX ! X by any desingularization of X. Letp 2 X be an isolated singularity. Let A 2 k[X](d). Let eXi = ��1(Xi). Thefollowing conditions are equivalent:a) A is adjoint at p.



Zariski Surfaces: Part I 47b) For all i = 0; 1; 2; 3 such that p 2 Xi,�1� Axdi �i� 2 RegeX (��1(p)):c) For some i = 0; 1; 2; 3 such that p 2 Xi,�1� Axdi �i� 2 RegeX (��1(p)):d) For some i = 0; 1; 2; 3 such that p 2 Xi, A=xdi is adjoint at p as anelement of (Oxi)p.Corollary 2.24.1. Retain the notations of (2.24.0). Assume p 2 X0; thenA is adjoint at p if and only if A(1; y1; y2; y3) is adjoint at the point ofH0 = Spec k[y1; y2; y3](F (1; y1; y2; y3))that corresponds to p. Similarly if p 2 X1; X2, or X3, with H0 replaced byH1, H2, or H3, and A suitable dehomogenized.Remark 2.24.2. (2.24.1) means that in order to check whether A is anadjoint form we can dehomogenize the equation of X and A and reduce toan a�ne hypersurface case.Proof of Proposition 2.24.0. Let eXi = ��1(Xi).(a))(b): Assume (a). For every i such that p 2 Xi,�1� Axdi � 2 RegeXi(��1(p)) = RegeX (��1(p)):(b))(a): Also follows since RegeXi (��1(p)) = RegeX (��1(p)).(b))(c): Obvious.(c))(d): Follows trivially from the de�nition of adjoints.(c))(b): Assume (c). Let j 6= i, p 2 Xj ,�1 Axdj �j! = �1 �xjxi�n�4 Axdj �i!= �1 �xjxi�n�4�d� Axdi ��i!= �1 �xjxi�n�4�d! � �1� Axdi �i�



48 Joseph Blass, Piotr Blass and Je� LangSince we assume (c), it is enough by (2.5.0) to see that �1((xj=xi)n�4�d)is regular on ��1(p). But (xj=xi)n�4�d 2 (Ox)p since p 2 Xi \Xj , so (b)follows. �Remark 2.24.3. If g is any form of degree 1 such that g(p) 6= 0, A isadjoint at p if and only if A=gd is adjoint to Xg. Hence the de�nition ofadjoint forms is invariant under a linear change of coordinates.Theory of `-Adjoints for `� 1 (An Outline)We shall use notations from the theory of adjoints. We consider
2
`k(X)=k, 
 over k(X). We de�ne ` � RegX (p) = felements of 
2
`k(X)=kof the form �ci�i, where �i = (dai1dbi1) 
 (dai2dbi2) 
 � � � 
 (dai`dbi`)and ci; aij; bij 2 Opg. We de�ne for each `� 1 a sheaf ` � !X(U ) =\q2U 0 `� RegX(p).Proposition 2.25.0. ` � !X (U ) is an Ox-module.Proposition 2.26.0. ` � !X(U ) is canonically isomorphic to !
`X . Fromnow on `�!X and !X̀ , and `�RegX (p), Reg
`x (p) will be used interchange-ably. !
`X has an analogous theory to !X . Propositions (2.3.0) - (2.8.9)have obvious analogues for !
`X . In particular, we note for F � A3 as in(2.8.3) and (2.9.0) we have for U � F :Proposition 2.27.0. !
`F (U ) = OF (U )�
`F .De�nition 2.28.0. Let F � A3 and p 2 F be as in (2.13.0), eF ! F aresolution of p. An element a 2 (OF )p is said to be `-adjoint if and only if�1(a�
`F ) = �1(a) � �1(�
`F ) = �1(a) (�1(�F ))
` is regular along ��1(p).Again Propositions (2.13.0) - (2.16.0) have obvious analogies for `-adjoints. A new fact is the following.Lemma 2.28.1. Let p 2 F � A3 be as in (2.19.0). If a1 is `1-adjoint anda2 is `2-adjoint at p, then a1a2 is `1 + `2 adjoint at p.Proof. Immediate from the de�nition.Passing to the projective case, let X � P 3 be as in (2.17.0).De�nition 2.29.0. A 2 k[X](d) is `-adjoint at p 2 X if A=xdi is `-adjointon the scheme Xi at p for each i such that p 2 Xi.De�nition 2.30.0. A is `-adjoint to X if A is `-adjoint at all singularpoints of X.Again we obtian propositions analogous to (2.24.0) - (2.24.3). Thekey di�erence is the following.Remark 2.31.0. �
`1 = (xi=xj)`(n�4)�
`j , which is a consequence of(2.18.0).Exactly as in the theory of adjoints we prove:



Zariski Surfaces: Part I 49Theorem 2.32.0. H0( eX;!
`eX ) is isomorphic as a k-vector space to thespace of `-adjoint forms of degree `(n � 4).Proposition 2.33.0. Let A1 be an `1-adjoint form of degree d1 (at p), A2be an `2-adjoint form of degree d2 (at p). Then A1A2 is an `1 + `2 adjointform (at p) of degree d1 + d2.Valuation Theory for Di�erentialsWe need only deal with the case of a normal hypersurface F � A3,F = Spec(R) where R = k[x; y; z]=(f(x; y; z)). Choose a canonical gen-erating di�erential �F . Let v be a discrete valuation of k(F ) that corre-sponds to a height one prime ideal of R. We extend v to 
2k(F )=k by settingv(�) = v(a) where � = a�F .This is clearly independent of the choices of �F as v is equal to 0 onunits of R.Proposition 2.34.1. � 2 
2k(F )=k is regular on F if and only if for everyvaluation v corresponding to a height one prime of R, v(�)� 0.Proof. Set � = a�F . � is regular on F if and only if a 2 R; that is, if andonly if v(a)� 0 for all v as in the proposition; but v(�) = v(a) for all suchvaluations by de�nition. �Lemma 2.35.0. Let X be a smooth surface. Then any point p 2 X hasan a�ne neighborhood U (p) with the following properties:(a) U (p) = Spec(R), R � k(X), R has fraction �eld k(X); R is regular.(b) !XjU(p) is free on one generator �R 2 
2k(X)=k; i.e., if V � U then!X (V ) = OX (V )�R is a free OX (V )-module on one generator. Inparticular, !X(U (p)) = R�R.Proof. In this case !X is the sheaf of K�ahler di�erentials and the result iswell known; for example see [12], p. 335.Propositon 2.36.0. Let F be isomorphic to a hypersurface in A 3 ; F isnormal. Let p 2 F be an isolated singularity. Then the ideal of adjointsAdj(p) � (OF )p is integrally closed.Proof. Let �: eF ! F be a desingularization. Suppose Adj(p) is not inte-grally closed. Then for some r 2 (OF )p �Adj(p),rn + a1rn�1 + � � �+ an = 0; (1)where ai 2 [Adj(p)]i, 1� i�n. Let �F be a canonical generating di�erentialon F . �1(r�F ) fails to be regular at some point q 2 ��1(p). Choose aneighborhood U (q) = Spec(R) of q in eF with R � k( eF ) as in (2.35.0).Then �1(�F ) = �R; where  2 k( eF );�1(r�F ) = �1(r) � �R;



50 Joseph Blass, Piotr Blass and Je� Langso �1(r) �  =2 R:On the other hand, if a 2 Adj(p), then �1(a) �  2 R. Since R is normal,there exists a discrete valuation v such thatv(�1(r) � ) = v(�1(r)) + v() < 0 (2)whereas v(�1(a)) + v()� 0 if a 2 Adj(p).If ai 2 [Adj(p)]i, v(�1(ai)) + i v()� 0: (3)We prove that (1), (2), (3) are incompatible. Apply �1 to (1) to obtain(�1(r))n = ��1(a1)(�1(r))n�1 � �1(a2)(�1(r))n�2 : : :� �1(an):Applying v to both sides yieldsn v(�1(r))� v(�1(ai0) � (�1(r))n�i0) = v(�1(ai0)) + (n� i0)v(�1(r))for some 1� i0 �n; so i0 v(�1(r))� v(�1(ai0)):By (3), v(�1(ai0))��i0 v(). So i0 v(�1(r))��i0 v() or v(�1(r))��v(), so v(�1(r)) + v(�)� 0 which contradicts (2). �Remark 2.37.0. Similarly, we can extend valuation theory to (
2k(F )=k)
2by setting v(a�
2F ) = v(a). For � 2 (
2k(F )=k)
2 we again have that � isregular on F if and only if v(�)� 0 for all valuations as in Proposition2.34.1. References1. S. S. Abhyankar, Local uniformation on algebraic surfaces over ground�elds of characteristic p 6= 0, Ann. of Math. 63 (19), pp. 491{526.2. M. Artin, On isolated rational singularities of surfaces, Amer. J.Math. 88 (1966), p. 129.3. P. Blass, Zariski Surfaces, Thesis, University of Michigan, 1977.4. P. Blass and J. Lipman, Remarks on adjoints and arithmetic generaof algebraic varieties, Amer. J. Math. 101 (2) (1979), pp. 331{336.5. F. Enriques, Le super�cie Algebriche, Nicola Zanichelli Editore,Bologna, 1949.
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