
Ulam Quarterly | Volume 2, Number 2, 1993On the Polynomial Representationof Certain RecurrencesPiero FilipponiFondazione Ugo BordoniVia B. Castiglione 59I-00142 Rome, ItalyAbstractAny polynomial Pr(n) of degree r in the integral indeterminate n isgiven by the n-th element Tn of the sequence fTng obeying the homogeneouslinear recurrence Tn = �R1�Tn�1��R2�Tn�2+ � � �+(�1)R�1�RR�Tn�R (n�R)of order R� r + 1. Once the polynomial is given, the initial conditions ofthe recurrence are easily found to be Ti = Pr(i) (0� i�R�1). In this notewe face the inverse problem, namely, for given initial conditions Ti, we �ndexplicit expressions for the coe�cients ci of the polynomial Tn = Pr(n) =crnr + cr�1nr�1 + � � �+ c1n+ c0 of degree r = R� 1 which is associated tothe above recurrence. Simpli�ed expressions of ci are given for particularvalues of i and closed-form expressions of these coe�cients are establishedfor the �rst few values of r. Finally, some combinatorial expressions areshown which emerge from certain special cases of the obtained results.AcknowledgmentThis work has been carried out in the framework of an agreementbetween the Italian PT Administration and the Fondazione Ugo Bordoni.1. IntroductionMy wife is a housewife having a bent for mathematics. She sometimesamuses herself by posing and solving geometrical problems. Some monthsago, she decided to determine the number dn of diagonals of a polygon withn sides and found, empirically, the following expressionsdn = n(n� 3)=2; (1.1)dn = dn�1 + n� 2; [d3 = 0]; (1.2)dn = 3dn�1 � 3dn�2 + dn�3; [d3 = 0; d4 = 2; d5 = 5]: (1.3)11



12 Piero FilipponiShe asked me how it is possible that three distinct relations yield the same(correct) result. I could not give an immediate answer. As a matter of fact,the general answer to this kind of question led me to write the survey paper[2] and this note.It can be readily proved (e.g., see [2]) that any polynomial Pr(n) ofdegree r in the integral indeterminate n is given by the n-th element Tn ofthe sequence obeying the homogeneous linear recurrence of order R� r + 1Tn = RXj=1(�1)j�1�Rj�Tn�j (n�R): (1.4)In fact, the characteristic equation associated to (1.4)(1� z)R = 0 (1.5)has the root 1 with multiplicityR so that the solution of (1.4) has the formTn = R�1Xk=0 Aknk; (1.6)where the coe�cients Ak are to be determined on the basis of the R initialconditions Ti(0� i�R� 1) of (1.4). Obviously, we haveTi = Pr(i) (0� i�R � 1): (1.7)It must be noted that the polynomial Pr(n) can also be given by theelement Qn of a sequence obeying a linear recurrence of order S < R+1. Inthis case, the recurrence relation is not homogeneous [2] and has the formQn = SXj=1(�1)j�1�Sj�Qn�j + f(n) (n�S); (1.8)where f(n) is a polynomial in n of degree less than or equal to r (cf. (1.2)).As an example, let us consider the polynomialP3(n) = 2n3 + 5n2 � 3n+ 4: (1.9)Some possible recurrences for (1.9) areTn = 5Xj=1(�1)j�1�5j�Tn�j (n� 5) (1.10)with initial conditions T0 = 4, T1 = 8, T2 = 34, T3 = 94, T4 = 200,Tn = 4Xj=1(�1)j�1�4j�Tn�j (n� 4) (1.11)



On the Polynomial Representation of Certain Recurrences 13with initial conditions T0 = 4, T1 = 8, T2 = 34, T3 = 94,Tn = 3Xj=1(�1)j�1�3j�Tn�j + 12 (n� 3) (1.12)with initial conditions T0 = 4, T1 = 8, T2 = 34, andTn = 2Xj=1(�1)j�1�2j�Tn�j + 12n� 2 (n� 2) (1.13)with initial conditions T0 = 4, T1 = 8.Observe that, in the above examples, the minimum admissible value of Rfor the recurrence to be homogeneous is R = r + 1 = 4 (see (1.11)).As said before, if Pr(n) is given, the initial conditions of (1.4) are givenby (1.7). In this note we face the inverse problem: once the recurrence of(1.4) and the initial conditions Ti (0� i�R � 1) are given, �nd explicitexpressions for the coe�cients ci (0� i�R� 1) of the polynomialTn = Pr(n) = crnr + cr�1nr�1 + � � �+ c1n+ c0 (1.14)of degree r = R � 1, associated to (1.4), in terms of the initial conditionsTi (Section 2). Observe that, depending on the choice of Ti, some of the cimay vanish so that the real degree of the polynomialmay be less than r (seeSection 5.1). In Section 3 simpli�ed expressions for ci are established forparticular values of i whereas closed-form expressions for them are givenin Section 4, for the �rst few values of r. Finally, in Section 5, somepolynomials of degree less than r are shown which emerge from particularchoices of Ti. Moreover, it is shown how some combinatorial identities canbe found by using the results established in the previous sections.2. Determination of the Coe�cients ciFrom (1.14) we immediately obtainc0 = T0: (2.1)Furthermore, for 1� i� r, we can write the system of r equations in the runknowns ci 8>>>><>>>>: c1 + c2 + � � �+ cr = T1 � T02c1 + 22c2 + � � �+ 2rcr = T2 � T0...rc1 + r2c2 + � � �+ rrcr = Tr � T0 (2.2)



14 Piero Filipponithat is 8>>>><>>>>: c1 + c2 + � � �+ cr = T1 � T0c1 + 2c2 + � � �+ 2r�1cr = (T2 � T0)=2...c1 + rc2 + � � �rr�1cr = (Tr � T0)=r : (2.3)In matrix form, we require the solution c of the equationMc = t; (2.4)where M is the particular r-by-r Vandermonde matrixM = 2664 1 1 1 : : : 11 2 22 : : : 2r�1...1 r r2 : : : rr�1 3775 ;and c = 2664 c1c2...cr 3775 ; t = 2664 T1 � T0(T2 � T0)=2...(Tr � T0)=r3775 :The solution of (2.3) is clearly c =M�1t: (2.7)Let M�1 = [�ij(r)]. The entries �ij(r) can be obtained by particularizingto M the explicit expression for the entries of the inverse of a genericVandermonde matrix [4, pp. 27-28]. Namely, we have�ij(r) = j (�1)r�i�(j)r�i(r)rYk=0k 6=j(j � k) = (�1)i+j�(j)r�i(r)(j � 1)!(r � j)!= (�1)i+j jr!�rj��(j)r�i(r); (2.8)where the combinatorial entity �(j)m (r) denotes the sum of all products of mof the integers f1; 2; : : : ; j � 1; j + 1; : : : ; r � 1; rg without permutations orrepetitions. For example, we have �(4)3 (6) = (1 �2 �3)+(1 �2 �5)+(1 �2 �6)+



On the Polynomial Representation of Certain Recurrences 15(1 �3 �5)+(1 �3 �6)+(1 �5 �6)+(2 �3 �5)+(2 �3 �6)+(2 �5 �6)+(3 �5 �6) = 307.Special cases for �(j)m (r) are�(j)0 (r)def= 1; (2:9)�(j)1 (r) = r2 + r2 � j = �r + 12 �� j (r � 2); (2:10)�(j)2 (r) = �r2�3r2 + 5r + 212 � j ��r + 12 �� j� (r � 3); (2:11)�(j)r�1(r) = r!=j (r � 1): (2:12)The proofs of (2.10) and (2.12) are immediate, whereas the proof of (2.11)is rather tedious and is omitted for brevity. Let us observe en passant that,on the basis of [6, p. 98], the quantity �(j)m (r) can be expressed in terms ofStirling numbers of the �rst kind S(i)k . Namely, we have�(j)r�i = (r � j)! rXk=i(�1)k+i S(i)k(k � j)! : (2.13)It has to be noted that all the addends in the sum (2.13) are positive andthis expression holds for all j provided the convention 1=(�jkj)! = 0 (seethe de�nition of the � function) is assumed. For i = r, (2.13) reduces to�(j)0 (r) = (r � j)!(�1)2rS(r)r =(r � j)! = 1; (2.14)which is consistent with the de�nition (2.9).Getting back to the point, from (2.7) we can writeci = �i1(r)(T1 � T0) + �i2(r)T2 � T02 + � � �+ �ir(r)Tr � T0r= �T0 rXj=1 �ij(r)j + rXj=1 �ij(r)j Tj : (2.15)Finally, from (2.15) and (2.8), after some simple manipulations we get thefollowing expression valid for 1� i� rci = (�1)i+1r! �T0 rXj=1(�1)j�rj��(j)r�i(r)� rXj=1(�1)j�rj��(j)r�i(r)Tj�: (2.16)The formulae (2.1) and (2.16) give the solution of the problem.



16 Piero Filipponi3. The Coe�cients ci for Particular Values of iFor particular values of i, the expression (2.16) simpli�es remarkably.Let us examine some cases.The coe�cient c1 (r � 1)Letting i = 1 in (2.16) and using (2.12) yieldc1 = T0 rXj=1(�1)j�rj�1j � rXj=1(�1)j�rj�Tjj : (3.1)Denoting the r-th harmonic number [5, p. 73] by Hr,Hr = rXi=1 1=i; (3.2)and using the noteworthy identity available in [7, Ex. 3, pp. 4-5], theexpression (3.1) can be rewritten asc1 = �HrT0 � rXj=1(�1)j�rj�Tjj : (3.3)The coe�cient cr (r � 1)Letting i = r in (2.16) and using (2.9) yieldcr = (�1)r+1r! 24T0 rXj=1(�1)j�rj�� rXj=1(�1)j�rj�Tj35 : (3.4)Since rXj=1(�1)j�rj� = �1 (r � 1); (3.5)the expression (3.4) can be rewritten ascr = (�1)r+1r! 24�T0 � rXj=1(�1)j�rj�Tj35 = (�1)rr! rXj=0(�1)j�rj�Tj : (3.6)The coe�cient cr�1 (r� 2)Letting i = r � 1 in (2.16) and using (2.10) yieldcr�1 = (�1)rr! �T0�r + 12 � rXj=1(�1)j�rj�� T0 rXj=1(�1)j�rj�j� rXj=1(�1)j�rj���r + 12 �� j�Tj�: (3.7)



On the Polynomial Representation of Certain Recurrences 17Now let us observe thatrXj=1(�1)j�rj�jk = 0 if r > k > 0: (3.8)The proof of (3.8) can be carried out by taking the successive derivatives(with respect to x) of both (1 � x)r and the corresponding binomial coef-�cient expansion, setting x = 1 and using induction on k. On the otherhand, (3.8) results from the de�nition and the closed-form expression of theStirling numbers of the second kind (e.g., see [1, p. 824]).Replacing (3.5) and (3.8) (with k = 1) in (3.7) yieldscr�1 = (�1)rr! 8<:��r + 12 �T0 � rXj=1(�1)j�rj���r + 12 �� j�Tj9=; : (3.9)The coe�cient cr�2 (r � 3)From (2.16) and (2.11), by using (3.5) and (3.8) (with k = 1 and 2) we get,after some simple manipulationscr�2 = (�1)r�1r! ���r2�NrT0� rXj=1(�1)j�rj���r2�Nr � j�r + 12 �+ j2�Tj�; (3.10)where (see (2.11)) Nr = (3r2 + 5r + 2)=12.4. The Coe�cients ci for the First Few Values of rAs an illustration, we give the expressions of the coe�cients ci interms of the initial conditions Ti (0� i� r) for 0� r �5. These expressionscan be derived from (2.1) and (2.16), after a good deal of calculation.(i) r = 0 c0 = T0:(ii) r = 1 c0 = T0; c1 = �T0 + T1:(iii) r = 2c0 = T0; c1 = �3T0 + 4T1 � T22 ; c2 = T0 � 2T1 + T22 :



18 Piero Filipponi(iv) r = 3 c0 = T0; c1 = �11T0 + 18T1 � 9T2 + 2T36 ;c2 = 2T0 � 5T1 + 4T2 � T32 ; c3 = �T0 + 3T1 � 3T2 + T36 :(v) r = 4c0 = T0; c1 = �25T0 + 48T1 � 36T2 + 16T3 � 3T412 ;c2 = 35T0 � 104T1 + 114T2 � 56T3 + 11T424 ;c3 = �5T0 + 18T1 � 24T2 + 14T3 � 3T412 ; c4 = T0 � 4T1 + 6T2 � 4T3 + T424 :(vi) r = 5c0 = T0; c1 = �137T0 + 300T1 � 300T2 + 200T3 � 75T4 + 12T560 ;c2 = 45T0 � 154T1 + 214T2 � 156T3 + 61T4 � 10T524 ;c3 = �17T0 + 71T1 � 118T2 + 98T3 � 41T4 + 7T524 ;c4 = 3T0 � 14T1 + 26T2 � 24T3 + 11T4 � 2T524 ;c5 = �T0 + 5T1 � 10T2 + 10T3 � 5T4 + T5120 :The above expressions can be readily checked on against (3.3), (3.6), (3.9)and (3.10), under the appropriate restrictions on r.RemarkEven though we restrict the choice of the initial conditions Ti tointegers, the coe�cients ci are not, in general, integers. The integrality ofall the ci can emerge from particular integral values of Ti. From (i){(vi) itcan be readily seen that, for r = 0 and 1, all the ci are integers, for r = 2,all the ci are integers i� T0 and T2 have the same parity whereas, for r = 3,all the ci are integers i� T0 � T3 (mod 3), T1 � T3 (mod 2), and T2 � T0(mod 2). For example, letting T0 = 11, T1 = 10, T2 = 5 and T3 = 32 in(iv), we get c0 = 11, c1 = 13, c2 = �20 and c3 = 6.



On the Polynomial Representation of Certain Recurrences 195. Special CasesParticular choices of the initial conditions Ti lead to particular poly-nomials Pr(n) whereas, with the aid of (1.7), (2.15) and (2.8), particularchoices of the coe�cients ci give rise to some interesting combinatorialidentities.5.1 Particular choices of the initial conditions(i) Tj = (�1)r+1Tr�j (0� j � r)From (3.6), we have cr = 0 (i.e., the degree of the polynomial is r�1).Observe that (i) implies that Tr=2 = 0 if r is even.(ii) Tj = j (0� j � r)From (2.1) we have c0 = 0 and, from (2.15), we haveci = rXj=1 �ij (1� i � r): (5.1)Now, observing that [�ij]M = I by de�nition (I being the r-by-r identitymatrix) and that the �rst column of M is a unit vector, we can writerXj=1 �ij = � 1 if i = 10 if 2� i� r: (5.2)From (5.1) and (5.2), it is evident that Pr(n) = P1(n) = n.(iii) Tj = 1 (0� j � r)From (2.1), we have c0 = 1 and, from (2.15), ci = 0 (1� i� r). Itfollows that Pr(n) = P0(n) = 1.5.2 Particular choices of the coe�cientsLet us suppose that the coe�cients ci of Pr(n) are given, with c0 = 0.From (1.7) we have Tj = rXi=1 ciji; (5.3)whence using (2.16) and taking into account that T0 = c0 = 0 by hypothesisyield rXj=1(�1)j�rj��(j)r�i(r)Tj = (�1)icir!: (5.4)For particular choices of ci, the quantity Tj given by the sum (5.3) hasa rather compact closed-form expression so that (5.4) becomes a compactidentity involving the quantities �(j)m (r) (or the Stirling numbers of the �rstkind (see (2.13)). Specializing i to r and 1 (see (2.9) and (2.12)) on the



20 Piero Filipponileft-hand side of (5.4) leads to some interesting combinatorial identities.We give four examples by letting ci = 1, ci = i, ci = �ri� and ci = �r�ii �(1� i� r) on the right-hand side of (5.4).(i) ci = 1From (5.3) we have� T1 = rTj = j(jr � 1)=(j � 1) for 2� j � r: (5.5)From (5.4) and (5.5) we can write�r2�(1)r�i(r) + rXj=2(�1)jj jr � 1j � 1 �rj��(j)r�i(r) = (�1)ir!: (5.6)Letting i = r and i = 1 in (5.6), from (2.9) and (2.12), we obtainrXj=2(�1)jj (jr � 1)j � 1 �rj� = (�1)rr! + r2 (5.7)and rXj=2(�1)j jr � 1j � 1 �rj� = r2 � 1; (5.8)respectively.By means of an analogous procedure, we obtained the further resultsshown in the sequel.(ii) ci = irXj=2(�1)jj jr(jr � r � 1) + 1(j � 1)2 �rj� = r �(�1)rr! +�r + 12 �� ; (5.9)rXj=2(�1)j jr(jr � r � 1) + 1(j � 1)2 �rj� = r�r + 12 �� 1: (5.10)(iii) ci = �ri� rXj=1(�1)j [(j + 1)r � 1]�rj� = (�1)rr!; (5.11)rXj=1(�1)j (j + 1)r � 1j �rj� = �r: (5.12)



On the Polynomial Representation of Certain Recurrences 21(iv) ci = �r�ii � (ci = 0 if i > br=2c)rXj=1(�1)j�rj�[Gr+1(j) � 1] = 0; (5.13)rXj=1(�1)j 1j�rj�[Gr+1(j) � 1] = 1� r; (5.14)where the numbers Gn(m) can be de�ned either as (e.g., see [3])Gn+2(m) = Gn+1(m) +mGn(m) [G0(m) = 0; G1(m) = 1] (5.15)or as (e.g., see [7, p. 75])Gn(m) = b(n�1)=2cXk=0 �n� 1� kk �mk: (5.16)The combinatorial identities obtainable in this way are by no meansexhausted in our brief account above. For example, the following questionarises quite naturally for those interested in recurring sequences: \Whichcouple of identities shall we obtain if we let ci be the i-th Fibonacci numberFi?" We leave the answer as an exercise for the interested reader.References[1] M. Abramowitz and I. Stegun, Handbook of Mathematical Func-tions, New York: Dover, 1972.[2] O. Brugia and P. Filipponi, \Sequences of Numbers: Something Old,Something New," (in Italian) Note Recensioni Notizie 40, 3/4 (1991),57{74.[3] P. Filipponi, \A Note on a Class of Lucas Sequences," FibonacciQuarterly 29, 3 (1991), 256{263.[4] R. T. Gregory and D. L. Karney, A collection of Matrices for TestingComputational Algorithms, New York: Wiley-Interscience, 1972.[5] D. E. Knuth, The Art of Comuter Programming, Vol. 1, Reading(Mass.): Addison-Wesley, 1973.



22 Piero Filipponi[6] N. Macon and A. Spitzbart, \Inverses of Vandermonde Matrices,"Amer. Math. Monthly 65 (1958), 95{100.[7] J. Riordan, Combinatorial Identities, New York: Wiley, 1968.
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