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Abstract

Any polynomial P.(n) of degree r in the integral indeterminate n is
given by the n-th element T,, of the sequence {7}, } obeying the homogeneous
linear recurrence 7, = (If)Tn_l — (I;L)Tn_z 4o (=D (g)Tn_R (n>R)
of order R>r+ 1. Once the polynomial is given, the initial conditions of
the recurrence are easily found to be T; = P.(¢) (0<i< R—1). In this note
we face the inverse problem, namely, for given initial conditions 7}, we find
explicit expressions for the coefficients ¢; of the polynomial T,, = Pr(n) =
ern” +e_n” " 4+ ein+ g of degree r = R — 1 which is associated to
the above recurrence. Simplified expressions of ¢; are given for particular
values of ¢ and closed-form expressions of these coefficients are established
for the first few values of r. Finally, some combinatorial expressions are
shown which emerge from certain special cases of the obtained results.
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1. Introduction

My wife is a housewife having a bent for mathematics. She sometimes
amuses herself by posing and solving geometrical problems. Some months
ago, she decided to determine the number d,, of diagonals of a polygon with
n sides and found, empirically, the following expressions

dy, = n(n—3)/2, (1.1)
dn:dn_1+n—2,[d3:0], (12
dp = 3dp_1 — 3dp_o+dp_s,[ds = 0,ds = 2,ds = 5. (1.3)
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She asked me how it is possible that three distinct relations yield the same
(correct) result. T could not give an immediate answer. As a matter of fact,
the general answer to this kind of question led me to write the survey paper
[2] and this note.

It can be readily proved (e.g., see [2]) that any polynomial P,(n) of
degree r in the integral indeterminate n i1s given by the n-th element 7, of
the sequence obeying the homogeneous linear recurrence of order R>r + 1

R

T, =Y (-1 (?) Tn_j (n>R). (1.4)

ji=1
In fact, the characteristic equation associated to (1.4)
(1-2)F=0 (1.5)
has the root 1 with multiplicity R so that the solution of (1.4) has the form

R-1

k=0

where the coefficients A are to be determined on the basis of the R initial
conditions T;(0< i< R — 1) of (1.4). Obviously, we have

T; = P.(i) (0<i<R—1). (1.7)

It must be noted that the polynomial P.(n) can also be given by the
element @), of a sequence obeying a linear recurrence of order § < R+1. In
this case, the recurrence relation is not homogeneous [2] and has the form

S

Qn = Z(—l)ﬂ'-l(f)czn_j L i) (n28), (1.8)

ji=1

where f(n) is a polynomial in n of degree less than or equal to r (cf. (1.2)).
As an example, let us consider the polynomial

Ps(n) = 2n® + 5n% — 3n + 4. (1.9)
Some possible recurrences for (1.9) are
5 ' 5
7= 0 ()1 29 (1.10)
ji=1 J
with initial conditions Ty = 4, Ty = 8, 175 = 34, T3 = 94, T, = 200,

T, :i(—l)HC)Tn_j (n>4) (1.11)

j=1
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with initial conditions Ty =4, Ty = 8, Th = 34, T3 = 94,

T :Z(—1)J’—1G)Tn_j+12 (n>3) (1.12)

j=1

with initial conditions Ty = 4, T} = 8, 7> = 34, and

T :Z(—l)j_1<§)Tn_j+12n—2 (n>2) (1.13)

j=1

with initial conditions Ty = 4, 77 = 8.
Observe that, in the above examples, the minimum admissible value of R
for the recurrence to be homogeneous is R = r + 1 =4 (see (1.11)).

As said before, if P.(n) is given, the initial conditions of (1.4) are given
by (1.7). In this note we face the inverse problem: once the recurrence of
(1.4) and the initial conditions T; (0<i< R — 1) are given, find explicit
expressions for the coefficients ¢; (0<i< R — 1) of the polynomial

T, :Pr(n):crnr—i—cr_lnr_l—|—~~~—|—cln—|—co (1.14)

of degree r = R — 1, associated to (1.4), in terms of the initial conditions
T; (Section 2). Observe that, depending on the choice of T;, some of the ¢;
may vanish so that the real degree of the polynomial may be less than r (see
Section 5.1). In Section 3 simplified expressions for ¢; are established for
particular values of i whereas closed-form expressions for them are given
in Section 4, for the first few values of r. Finally, in Section 5, some
polynomials of degree less than r are shown which emerge from particular
choices of T;. Moreover, it is shown how some combinatorial identities can
be found by using the results established in the previous sections.

2. Determination of the Coefficients ¢;

From (1.14) we immediately obtain
Cyp = To. (21)

Furthermore, for 1 <¢<r, we can write the system of r equations in the r
unknowns ¢;

citeat -t =TT
21+ 2%cq 4+ -+ 27¢, = Ty — T

rer+ries+ e, =T, =Ty
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that 1s

co+ea+ e =1 =1
Cl+262+~~~—|—2r_1crI(TQ—TQ)/Q

(2.3)
e1+res+ " le, = (T, = Tp)/r
In matrix form, we require the solution ¢ of the equation
Me=1t, (2.4)
where M is the particular r-by-r Vandermonde matriz
11 1 ... 1
1 2 22 or—1
M = . )
1 r 2 prl
and
C1 T1 — TO
C2 (T2 — To)/2
c= t= .
er (T, —To)/r
The solution of (2.3) is clearly
c=M""'t. (2.7)

Let M~ = [1;(r)]. The entries v;;(r) can be obtained by particularizing
to M the explicit expression for the entries of the inverse of a generic
Vandermonde matrix [4, pp. 27-28]. Namely, we have

(=)l _ (D)

vij(r) = j—————— = &= -
. G0
-5 (2.8)
kZj

=L (e

i\

where the combinatorial entity 0'%)(7“) denotes the sum of all products of m
of the integers {1,2,...,7— 1,7+ 1,...,r — 1,7} without permutations or
repetitions. For example, we have 05))4)(6) =(1-2-3)+(1-2:5)+(1-2-6)+
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(1~3~5)—|—(1~3~6)—|—'(1~5~6)—|—(2~3~5)—|—(2~3~6)—|—(2~5~6)—|—(3~5~6):307.
Special cases for 0'%)(7“) are

o E (2.9)
o) (r) = ii —j= (r; 1) —j (r>2), (2.10)
o (r) = (2)3”1# —j [(; 1) —j] (r=3), (211
d D (ry=r1/j (r>1). (2.12)

The proofs of (2.10) and (2.12) are immediate, whereas the proof of (2.11)
1s rather tedious and is omitted for brevity. Let us observe en passant that,
on the basis of [6, p. 98], the quantity 0'%)(7“) can be expressed in terms of

Stirling numbers of the first kind Sl(j). Namely, we have

() - k4i Sl(ci)
= (r— ) —1)Ftr_—&
7= =N o

k=t

(2.13)

It has to be noted that all the addends in the sum (2.13) are positive and
this expression holds for all j provided the convention 1/(—|k|)! = 0 (see
the definition of the T' function) is assumed. For ¢ = r, (2.13) reduces to

o (1) = (r= N=DZ SO/ (r— )l =1, (2.14)

which is consistent with the definition (2.9).
Getting back to the point, from (2.7) we can write

T —T Tr _T
C; = Vil(r)(Tl — To) + I/Z'Q(T) 2 9 0 + -+ I/ir(r) r .
_ .o (2.15)
Vi (r Vii\r
j=1 ji=1

Finally, from (2.15) and (2.8), after some simple manipulations we get the
following expression valid for 1 << r

(e
- é;(—l)f ()]

The formulae (2.1) and (2.16) give the solution of the problem.

(2.16)
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3. The Coefficients ¢; for Particular Values of 7

For particular values of ¢, the expression (2.16) simplifies remarkably.

Let us examine some cases.

The coefficient ¢1 (r>1)
Letting ¢ = 1 in (2.16) and using (2.12) yield

g ()l S ()

ji=1

Denoting the r-th harmonic number [5, p. 73] by H,,

H, = Z 1/i,
i=1

(3.2)

and using the noteworthy identity available in [7, Ex. 3, pp. 4-5], the

expression (3.1) can be rewritten as
" e\ T
o =—H,Ty—) (=1y () —.
()]

The coefficient ¢, (r>1)
Letting ¢ = r in (2.16) and using (2.9) yield

. = EU TOZ;(—W' ()- i(—l)f ()n

j=1

Since

the expression (3.4) can be rewritten as

= CU oS0y ()| = S ,T0<—1>f'(§)Tj.

Jj=1 ji=

The coefficient c,_1 (r>2)
Letting ¢ = — 1 in (2.16) and using (2.10) yield

= L (TT ) S (7) - m gf—”j G

ji=1

([ )

(3.3)

(3.7)



On the Polynomial Representation of Certain Recurrences 17

Now let us observe that

S (1Y C)jk =0 if r>k>0. (3.8)

ji=1

The proof of (3.8) can be carried out by taking the successive derivatives
(with respect to x) of both (1 — #)” and the corresponding binomial coef-
ficient expansion, setting @ = 1 and using induction on k. On the other
hand, (3.8) results from the definition and the closed-form expression of the
Stirling numbers of the second kind (e.g., see [1, p. 824]).

Replacing (3.5) and (3.8) (with & = 1) in (3.7) yields

i {5 (2 ) oo

ji=1

The coefficient cp_o (v > 3)
From (2.16) and (2.11), by using (3.5) and (3.8) (with & = 1 and 2) we get,

after some simple manipulations

= S
-2 () G5 + 7] 5}

where (see (2.11)) N, = (3r? + br + 2)/12.

(3.10)

4. The Coefficients ¢; for the First Few Values of r

As an illustration, we give the expressions of the coefficients ¢; in
terms of the initial conditions 7; (0<i<r) for 0 <r<5. These expressions
can be derived from (2.1) and (2.16), after a good deal of calculation.

(i) r=0

co = Tp.
i) r=1
co ="y, e = =Ty +11.
(iil) r=2
o= Th ¢ = —3T0—|—4T1—T2’ cz:w.

2 2
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(iv) r=3
—1175 + 1877 — 915 + 275
co = Tu, C1 = 6 )
200 — 51y + 415 — T3 —To+ 31 =315+ 135
Cy = , C3= .
2 6
(v) r=4
—25T0 + 48717 — 3675 + 1675 — 31}
co = To, €1 = D ;
35T — 10477 + 11475 — 5675 + 1174
Cy = ’
24
—5To + 1817 — 2475 + 1475 — 3T} To — 4T, + 615 — 415+ T4
C3 = , C4 = .
12 24
(vi) r=5
—137T, + 30077 — 30075 + 20073 — 75T, + 1275
Cyp = To, Cc1 = 60 s
457y — 15474 + 214715 — 15675 + 61714 — 1075
Cy = ’
24
. =171 + 7175 — 11875 + 9875 — 41714 + 715
3 = 3
24
3Ty — 1474 + 26715 — 2475 + 1174 — 275
= 2% ’
—To + 51Ty — 1075 + 101753 — 5Ty + Tk
= 120 '

The above expressions can be readily checked on against (3.3), (3.6), (3.9)
and (3.10), under the appropriate restrictions on r.

Remark

Even though we restrict the choice of the initial conditions T; to
integers, the coefficients ¢; are not, in general, integers. The integrality of
all the ¢; can emerge from particular integral values of T;. From (i)—(vi) it
can be readily seen that, for » = 0 and 1, all the ¢; are integers, for r = 2,
all the ¢; are integers iff Ty and 75 have the same parity whereas, for r = 3,
all the ¢; are integers iff Ty = T3 (mod 3), T4 = 75 (mod 2), and T> = Tp
(mod 2). For example, letting Ty = 11, 73 = 10, 75 = 5 and 75 = 32 in
(iv), we get ¢g = 11, ¢y = 13, ¢3 = —20 and ¢3 = 6.
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5. Special Cases

Particular choices of the initial conditions 7; lead to particular poly-
nomials P.(n) whereas, with the aid of (1.7), (2.15) and (2.8), particular
choices of the coefficients ¢; give rise to some interesting combinatorial
identities.

5.1 Particular choices of the initial conditions
(i) T;=(-1)*T_; (0<js<r)
From (3.6), we have ¢, = 0 (i.e., the degree of the polynomialis r—1).
Observe that (i) implies that 7,5 = 0 if r is even.
(i) T;=j(0<j<r)

From (2.1) we have ¢y = 0 and, from (2.15), we have

=Y v (l<i<r) (5.1)
ji=1

Now, observing that [;;]M = I by definition (I being the r-by-r identity
matrix) and that the first column of M is a unit vector, we can write

1 ife=1

= : 5.2
;V] {0 if2<i<r. (5:2)

From (5.1) and (5.2), it is evident that P.(n) = Pi(n) = n.
(i) T;=1(0<j<r)

From (2.1), we have ¢g = 1 and, from (2.15), ¢; = 0 (I <i<r). Tt
follows that Py(n) = Py(n) = 1.

5.2 Particular choices of the coefficients

Let us suppose that the coefficients ¢; of P.(n) are given, with ¢ = 0.
From (1.7) we have

Ty =Y aj, (5.3)
i=1

whence using (2.16) and taking into account that Ty = ¢y = 0 by hypothesis
yield

S ()t = (-1t (5.4)
ji=1 J
For particular choices of ¢;, the quantity 7; given by the sum (5.3) has

a rather compact closed-form expression so that (5.4) becomes a compact

identity involving the quantities 0'%)(7“) (or the Stirling numbers of the first
kind (see (2.13)). Specializing ¢ to r and 1 (see (2.9) and (2.12)) on the
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left-hand side of (5.4) leads to some interesting combinatorial identities.
We give four examples by letting ¢; = 1, ¢; = ¢, ¢; = (:) and ¢; = (’72)
(1 <i<r) on the right-hand side of (5.4).

(1) C; = 1
From (5.3) we have

{ler (55)
Ty = (7 =D/ —1) for2<j<r. |

From (5.4) and (5.5) we can write

V]

o+ YV (el = o 6o

Letting ¢ = 7 and ¢ = 1 in (5.6), from (2.9) and (2.12), we obtain

r ) r_
Z(—l)]j(jj — ) C) = (=1)rl 472 (5.7)
j=2
and
r i
Y (1YL <7~) =r2_1, (5.8)
respectively.

By means of an analogous procedure, we obtained the further results
shown in the sequel.

(11) C; = 1

S LG+ 1) — 1] () — (-1 (5.11)

Z(_mw (r) =—r (5.12)
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(iv) e =("7") (e =0ifi> [r/2])

Sy ()i - 1=
é(—l)ﬁ(;f) (Graa () 1] =17,

where the numbers G, (m) can be defined either as (e.g., see [3])
Gnta(m) = Guyr(m) +mGp(m) [Go(m) = 0, G1(m) = 1]

or as (e.g., see [7, p. 75])

[(n-1)/2] n_1—k
Gp(m) = Z ( i )mk
k=0

21

(5.13)

(5.14)

(5.15)

(5.16)

The combinatorial identities obtainable in this way are by no means
exhausted in our brief account above. For example, the following question

arises quite naturally for those interested in recurring sequences:

“Which

couple of 1dentities shall we obtain if we let ¢; be the i-th Fibonacci number

F;7” We leave the answer as an exercise for the interested reader.
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