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§14 Conic Projections N.B. We have already used Conic Projec-
tions in different contexts, notably at the end of No. 8, formulation of
10.4 and others and the “sorite” that follows should without a doubt come
sooner in the beginning of the paragraph and possibly in the auxiliary para-
graph “grassmanian”. Let C' = P(F') be a linear subvariety of P(F) = P
of relative dimension » —m — 1 over S| i.e. of codimension (m+ 1) in P so
that F' is a quotient of F locally free of rank » — m, F = E/G where G is
locally free of rank m+ 1. We have defined in the algebraic way of Chapter
IT a morphism

pe: P —C = P(E)— P(E/G) — P(G)

which we will interpret geometrically and which will be called (because
of the description that follows) the conic projection with center C'. (N.B.
We assume » — m — 1 to be in between —1 and r — 1, i.e. m is between
0 and r, nothing more. For this let us begin by interpreting P(G) as
a closed subscheme of Grass™(P) = Grass,_,41(P) due to the obvious
homomorphism of functors

P(G) — Grass;—m41(F)
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obtained by considering for every invertible quotient G/G’ of G, the locally
free module of rank (r —m) 4+ 1 E/G’ of E and the same after every base
change). The above homomorphism of functors is a monomorphism and
since the first one is proper over S, the second one separated is a closed
immersion. More generally we should make explicit the closed immersions
of grassmanians of G, i.e. of P(G) into those of F, i.e. of P(F). The image
(in the sense of functors) of the obtained morphism is formed from linear
subvarieties L of P, of a given dimension that contain C'. Let us denote by
Q(C) this image in the case that we study (i.e. for the dimensions specified
above) and identifying P(G) with @(C') the morphism of conic projection

pe: P— C — Q(C) C Grass™(P)

is nothing else but the one that associates with every section of P — C' the
unique linear subvariety L of P of codimension m containing at the same
time C' and the given section (of course by “containing a section” we mean
that the section factors by L). If now we have f: X — P, it makes sense to
consider the composition

X—fYC)—=P-C—QQ)

which we may call conic projection of X relative to f and with center
C, denoted pX or simply p.. We shall point out that in general it is not
defined over all of X, precisely it is such if and only if f=}(C) = ¢, i.e.
F(X) does not meet the center C' of the projection. We shall give another
interpretation of this morphism in terms of constructions used in previous
Nos. For this, with the notations introduced elsewhere, let us consider

S x)  _y(m)
~ XQ(C) X Grgs:sm Q(C)

lr
Q)

Let us note on the other hand that ¢ induces an isomorphism
¢ (X = THO) = X = FTHO)

and it is immediate that p. is nothing else but p'¢"~! where p’ is the re-
striction of p to ¢71(X — f71(C)). We may therefore say using ¢’ just
for a simple 1dentification that p. 1s the restriction of the morhism p to
X - YO c xg(c). For that reason it is convenient to denote again by
pX or p. and to call the previous morphism [(for instance)] the ertended
conic projection of X relative to f: X — P, with center C. In this way
the properties of the restricted conic projection are reduced to those of

the extended conic projection, which has supposedly been systematically
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studied elsewhere (cf. No. 10 and No. 12). The main question that arises
is, if S = Spec(k) what are the properties of the conic projection of X if
we take C' to be generic in Grass™T1(P) which requires that we make a
base change k — k(n), i.e. C is then indeed a linear subvariety of Xp,);
standard arguments that have already been repeated so often allow us to
conclude about similar properties for the conic projections corresponding
to the points of Grass”*1(P) belonging to anon-empty open set of the said
grassmanian and finally when % is infinite we conclude about the existence
of a (in fact of an infinity of) C' defined over k, i.e. a linear subvariety
of P iself (without changing the base field) producing a conic projection
having the said properties. We should rather group this type of general
explanations with those of the same type given in No. 4, 7 and which we
have already implicitly used more or less, for example in No. 13 (cf. 13.4.¢)
For the same reason, we should better to examine the relative properties
of a sheaf F' over X, taking its inverse image Fg?c)) over Xg(%). Moreover,
it is necessary in the precise case just described to have simpler notations,
I propose X (C') and F'(S) or simply X and F if there is no possibility of
confusion (attention: the F' here is not the same as in the beginning of
this No.). Grosso modo (roughly speaking) and if we, say, assume that f
i1s an immersion, the properties of the generic conic projection are very dif-
ferent, depending on whether we assume dim X > m or dim X < m even
dim X <m. In what follows, we consider the C;; C Py, corresponding to
the generic point 5 of Grass™*! and we give up making the interpretation
of the obtained results in terms of “almost all the points ...”

To start with, we already have noticed in 5.3 (a ‘catching up’ of the
general case in No. 12) that C) cuts X, “regularly”, more precisely and

more generally for every quasi-coherent F' over X the section ¢57m+1) of
the locally free module of rank m + 1 over Xy(,) whose scheme of zeros
is Cy, is F-regular. By 10.2 this implies for example that the morphism
)A(:(Cn) — Xp(y) 1dentifies )?(Cn) with the prescheme deduced from Xj )
by blowing up f~'(C,) = X, x C, in the case where dim f(X) < m
we will also have f=1(C},) = 0 and consequently )?(C’n) = Xp(n) 18 an
isomorphism (and indeed the restricted conic projection is therefore defined
over all of X a priori). Then the questions of the dimension of the fibers of

pe: X(Cp) — Q(C,), and the flatness of this morphism arise. We find:

Proposition 14.1. Let us suppose that X is irreducible, more generally
that for every irreducible component X; of X the fiber of X; at the point
f(x;) (x; = generic point of X;) has a dimension (independent of i), which
is the case for example with d = 0 if f: X — P is quasi-finite. Then

a) If dim f(X) > m then the dimension of the fibers of pc:)?(Cn) —
Q(Cy) are all equal to dim X — m.

b) If dim f(X) < m and if the non-empty fibers of X* over P are all of
dim d then the non-empty fibers of p. are all of dimension d so p. is
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finite resp. quasi-finite... f: X — P is finite.
In the case a) we know already (I hopel) that for every point & of

Grass™(P) the dimension of 2™ s at least equal to dim X — m, it is in
particular such if & comes from a point of Q(C}). For the opposite direction
inequality note that (we place ourselves over the field &' = k(£)) since
Cyrt C Le is a hyperplane of Lg, if the dimension of xg”” =X xp L¢ (was)

> dim X — m + 1, then that of X{" ™ = X xp C,, would be > dim X —
m, (since the base change k(n) — k' transforms the last prescheme into
(X xpLg)xp, (Chrr)). However since we have the contrary: dim x(m+1) —
dim X —m+1. by No. 2 (repeated in No. 10). The case b) is treated in the
same way: if we had dim X xp L > d+1, or what is the same f (X3 )N L
is of dim > 1 then we would have using the same argument as above that
XM+ £ ¢ in contradiction with what we have remarked before 14.1.

Corollary 14.2. Let us assume that X has dimension m and that f: X —
P is finite (respectively quasi-finite), then the morphism Pcy,: Xy, —
Q(C,) is finite surjective (resp. quasi-finite dominant).

Indeed, this morphism is quasi-finite and since dim Xy () =dim Q(C})
is dominant if f is finite, pc, is also finite, as proper, therefore surjective,
since 1t 18 dominant.

Corollary 14.3. With the conditions of 14.1 a) if X is Cohen-Macauley
then the morphism pc: X(C,) — Q(C,) is a Cohen-Macauley morphism
and a fortiori flat.

For the proof see the remark above on page 21 before 5. (to be
corrected by Interpr.) which gives a stronger result which (to include in
14.3), taking into account that @gm) for £ € p(n) are Fi(y) regular.

This corollary must be modified but for simplicity we may assume
that f is quasi-finite if I is a Cohen-Macauley module over X and if for
every irreducible component Z of Supp F' we have dim Z > m then F(C))
is Cohen-Macauley (and & fortiori) flat relatively to ¢(C}).

We notice that we cannot replace, to obtain the same conclusion p¢
flat, the C'M hypothesis on X by a simple dimension hypothesis. Let us
for example assume that f is an immersion and that X is irreducible of
dimension m, so that pc is quasi-finite and since Xp(,) and Q(C),) are
irreducible of same dimensions and the second one is regular, pc cannot be
flat unless Xp,(,y is C'M.

More delicate are the differential properties of the conic projection,
notably for X smooth over k& and f: X — P unramified studied in No. 12.
Let us recall that outside of a subset 7 of codim 1 of @(C') the morphism
Pcy over )?(C’n) is smooth. And a more detailed analysis summarized in
No. 12 shows (or should show if we do not do it) that if the dimensions of
the components of X are > m then outside of a subset 2’ C Z of Q(C})

of codimension > 2, the fibers pal(f) = Xém) can only have at the worst
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ordinary singular points (in the geometric sense) and indeed (if f is an
immersion and X is geometrically irreducible) at most one such point, the
latter being necessarily rational over k(€) — these assertions being all valid
at least if k& is of characteristic 0 or only if we replace f by¢,f (n > 2) as
in No. 9.

It is also appropriate to give the differential properties of Py, in the
case where dim X < m and consequently where Py is defined over Xy ;).
I restrict myself to indicating the following properties. The proof should
be easy and is left to Dieudonné (or Blass). [Interpr.]

Proposition 14.4. Let us suppose that f: X — P is unramified and that
dim X <m. Let T be a finite subscheme of X. Then

a) If f is an immersion, the restriction of pc to Ty, Is radical, i.e.
“geometrically injective”. If in addition Y a closed subset of X of
dimension < (m — 1) we have

PE;(PCn(Yk(n))) N Ty = ¢ = empty set

b) If X is smooth at the points of T' then pc, Is unramified at all the
points Ty, and also at the points of

peppen(Tien)

Proposition 14.5. Let us suppose that dim X <m—1, f: X — P an
immersion, finally X separable over k. Let Y, be the scheme image of Xy,
in Q(Cy). Then the induced morphism pcy: Xy — Yy Is birational and
for every point x of Xy, over a closed point of X, p.y, is étale at x and
even at the points ofp’cnp’cn(x).

Let us note the following consequence:

Corollary 14.6. Let X be an algebraic projective scheme irreducible
and separable of dimension n over an infinite field k. Then there exists a
birational isomorphism of X onto a hypersurface of P11,

We will avoid believing that, even if X is a closed smooth geometri-
cally irreducible subset of P of dimension m — 1 = n, the conic projection
(P.,) is necessarily an immersion. Indeed if k is infinite this would imply
that there exists a C' rational over £ having the same property, then that X
is isomorphic to a non-singular hypersurface of P*"*!. But even for n = 1
(thus X is an algebraic projective curve smooth and connected over an al-
gebraically closed field) it is easy to construct examples when X cannot be
in a P?. Also in 14.4 (in the same way) we will avoid to confuse the given
statement with the assertion (in general false) that p,. is itself a monomor-
phism (previous counterexample or even more obvious counterexample if X
is smooth of dimension m), or that P, should be unramified. For the last
point to convince ourselves let us take X to be a closed smooth subscheme
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irreducible and of dimension m (over k algebraically closed say such that
if we had X — @ = p™ unramified, it would be étale because of dimen-
sions, but we can prove (see Ch. VIII) that this implies that X — P™
(P™ being “simply connected”). The intuitive geometric meaning of 14.4
is that the ramification set of p¢, is “variable” over k& more precisely the

ramification set of p¢c, for a variable  in an open set of Grass™1 (k) varies
in X(k) and does not admit any “fixed point”... Of course, in order to
justify in the present No. the passage from a generic point 5 to a neigh-
borhood of Grass™*!(P) and also, to be able if needed to take back our

general considerations of 7.1, we have to consider the diagrams:

X — X(O)
I I
X — Q)

obtained (with the help) using different C' € Grass™*1(S) and more gener-
ally those obtained after a base change 7' — S for points & € Grass™T1(T')

Xr — X(C¢)=Xr(C)

l !

T — Q(Ce)

as deduced by base change &:T — Grass”™t1J(P) = T, of the universal
diagram (relative to the canonical point of Grass™*! in T'):

Xy — X(©

l l

T — QO

where C is the canonical linear subvariety of Py. Then the above )?(C’n) —
Q(C,) is nothing else but the morphism of generic fibers for the T morphism

)?((‘3) — @Q(C€) of this last diagram and every constructible property for the
morphism of generic fibers implies the same property for neighboring fibers.
From the notational point of view, @ should be looked at (and even intro-
duced) as the name of the natural morphism of functors Grass™*!(P) —
Sub-preschemes of Grass™(P).

Please note: This copyright notice has been revised and varies
slightly from the original statement. This publication and
its contents are ©copyright Ulam Quarterly. Permission is
hereby granted to individuals to freely make copies of the
Journal and its contents for noncommercial use only, within
the fair use provisions of the USA copyright law. For any use
beyond this, please contact Dr. Piotr Blass, Editor-in-Chief
of the Ulam Quarterly. This notification must accompany
all distribution Ulam Quarterly as well as any portion of its
contents.



