
Ulam Quarterly | Volume 2, Number 2, 1993Quaternion Recurrence RelationsA. F. HoradamUniversity of New EnglandArmidale 2351Australia1. IntroductionIn a hopeful moment it was suggested [4] that the investigtion of com-plex Fibonacci numbers undertaken in [3] might be extended to quaternions(hypercomplex numbers). It is the purpose of this paper to examine thedegree to which this expectation is realized. Harman's ideas in [3] areextended in another way in [7].A quaternion Q with real components a0, a1, a2, a3 and basis 1, i, j,k is a number of the formQ = 1a0 + ia1 + ja2 + ka3 (1a0 = a0) (1.1)where � i2 = j2 = k2 = �1ij = k = �ji; jk = i = �kj; ki = j = �ik: (1.2)The conjugate �Q of Q is�Q = 1a0 � ia1 � ja2 � ka3 (1.3)and the norm is Q �Q = a20 + a21 + a22 + a23: (1.4)Quaternions form an associative, non-commutative division algebra ofrank 4 over the reals [1]. The quarternion algebra has no divisors of zero.Complex numbers form a sub-algebra of quaternions when a2 = a3 = 0.Next, de�ne the sequence of numbers fung by the recurrence relationun+2 = p un+1 � q un (n� 0) (1.5)u0 = 0; u1 = 1 (1.6)23



24 A. F. Horadamwhere p and q are arbitrary non-zero real numbers.When p = 1, q = �1, un = Fn (the n-th Fibonaccinumber). If p = 2, q = �1, then un = Pn (the n-thPell number).Other examples of (1.5), with (1.6), do not especially concern us here.Particular usage of (1.5) and (1.6), which will be important in subse-quent work on generalization, is made for the sequences fUng, fVng, fWngand fTng de�ned by the following recurrence relations and initial condi-tions: Uh+2 = p1Uh+1 � q1Uh U0 = 0; U1 = 1 (1.7)V`+2 = p2V`+1 � q2V` V0 = 0; V1 = 1 (1.8)Wm+2 = p3Wm+1 � q3Wm W0 = 0; W1 = 1 (1.9)Tn+2 = p4Tn+1 � q4Tn T0 = 0; T1 = 1: (1.10)Though in our de�ning recurrence relation (1.5) we restrict n to be� 0, the use of negative subscripts may be occasionally useful. For instance,one can easily establish that F�n = (�1)n�1Fn so that F�1 = 1.2. Quaternions, Fibonacci Numbers and the Symbol GExtending the ideas if [3], let us de�ne the recurrence relations8>>><>>>:G(h+ 2; `;m; n) = G(h+ 1; `;m; n) +G(h; `;m; n)G(h; `+ 2;m; n) = G(h; `+ 1;m; n) +G(h; `;m; n)G(h; `;m+ 2; n) = G(h; `;m+ 1; n) +G(h; `;m; n)G(h; `;m; n+ 2) = G(h; `;m; n+ 1) +G(h; `;m; n) h; `;m; n�0(2.1)with initial conditions8>>>>><>>>>>:G(0; 0; 0; 0) = 0; G(1; 0; 0; 0) = 1; G(0; 1; 0; 0) = i;G(0; 0; 1; 0) = j; G(0; 0; 0; 1) = k;G(1; 1; 0; 0) = 1 + i; : : : ; G(0; 0; 1;1) = j + kG(1; 1; 1; 0) = 1 + i+ j; : : : ; G(0; 1; 1;1) = i+ j + kG(1; 1; 1; 1) = 1 + i+ j + k: (2.2)



Quaternion Recurrence Relations 25Inductive, or other, proofs may be employed to derive the followingresults for the symbol G:G(h; 0; 0; 0) = Fh; G(0; `; 0; 0) = iF`; G(0; 0;m; 0) = jFm;G(0; 0; 0; n) = kFn (2.3)G(h; 1; 0; 0) = Fh + iFh+1 (2.4)G(h; `; 0; 0) = FhF`+1 + iFh+1F` (2.5)G(h; 1; 1; 0) = Fh + (i + j)Fh+1 (2.6)G(h; ; `; 1; 0) = FhF`+1 + iFh+1F` + jFh+1F`+1 (2.7)G(h; `;m; 0) = FhF`+1Fm+1 + iFh+1F`Fm+1+ jFh+1F`+1Fm (2.8)G(h; 1; 1; 1) = Fh + (i + j + k)Fh+1 (2.9)G(h; `; 1; 1) = FhF`+1 + iFh+1F` + (j + k)Fh+1F`+1 (2.10)G(h; `;m; 1) = FhF`+1Fm+1 + iFh+1F`Fm+1+ jFh+1F`+1Fm + kFh+1F`+1Fm+1 (2.11)G(h; `;m; n) = FhF`+1Fm+1Fn+1 + iFh+1F`Fm+1Fn+1+ jFh+1F`+1FmFn+1 + kFh+1F`+1Fm+1Fn: (2.12)Thus, G(h; `;m; n) is a quaternion with quadruple-product compo-nents FhF`+1Fm+1Fn+1; Fh+1F`Fm+1Fn+1;Fh+1F`+1FmFn+1; Fh+1F`+1Fm+1Fn:(Compare this detail with corresponding information given in [4].)Clearly, all the expressions for the G's are quaternions whose com-ponents are Fibonacci numbers (F0 = 0, F1 = 1) or products of Fibonaccinumbers. Obviously there is a pattern in the composition of these compo-nents.Some numerical examples of (2.12) are the quaternionsG(2; 0; 1; 3) = 3 + 6j + 4k; G(1; 2; 3; 4) = 30 + 15i+ 20j + 18k;G(2; 3; 1; 4) = 15 + 20i+ 30j + 18k:If one imagines m and n in (2.1) to be non-existent, then our resultsreduce to those given in [3] for complex Fibonacci numbers. Indeed ourresults (2.3), (2.4), (2.5) are identical with the nice results (2.5), (2.6),(2.7) respectively in [3], mutatis mutandis.Perhaps we shuld o�er a proof of one of the above expressions relatingto G. Choose (2.12).Proof of (2.12): Proceed by induction on n in the �rst instance. AssumeG(h; `;m; n) = FnG(h; `;m; 1) + Fn�1G(h; `;m; 0): (�)



26 A. F. HoradamThis is clearly true when n = 0,n = 1 (since F0 = 0, F�1 = 1).For n = k (constant), (�) isG(h; `;m; k) = FkG(h; `;m; 1) + Fk�1G(h; `;m; 0): (�)ThenG(h;`;m; k + 1) = G(h; `;m; k) +G(h; `;m; k� 1) by (2.1)= FkG(h; `;m; 1) + Fk�1G(h; `;m; 0)+ Fk�1G(h; `;m; 1)+ Fk�2(h; `;m; 0) by (�)= (Fk + Fk�1)G(h; `;m; 1) + (Fk�1 + Fk�2)G(h; `;m; 0)= Fk+1G(h; `;m; 1) + FkG(h; `;m; 0) since Fk+1 = Fk + Fk�1:Consequently, (�) is true for n = k + 1 and hence for all n.NextG(h; `;m; n) = FnfFhF`+1Fm+1 + iFh+1F`Fm+1 + jFh+1F`+1Fm+ kFh+1F`+1Fm+1g+ Fn�1fFhF`+1Fm+1 + iFh+1F`Fm+1 + jFh+1F`+1Fmgby (�), (2.8) and (2.11)= FhF`+1Fm+1Fn+1 + iFh+1F`Fm+1Fn+1 + jFh+1F`+1FmFn+1+ kFh+1F`+1Fm+1Fnon using Fn + Fn�1 = Fn+1.So far so good. When, however, we seek to obtain a recurrence rela-tion for the quaternion symbolG(h; `;m; n) the algebra becomes somewhatcomplicated. After expansion using (2.12), and appropriate algebraic ma-nipulation and grouping, we �ndG(h+ 1; `+ 1;m+ 1; n+ 1) (2.13)= Fh+1F`+2Fm+2Fn+2 + iFh+2F`+1Fm+2Fn+2 + jFh+2F`+2Fm+1Fn+2+ kFh+2F`+2Fm+2Fn+1= Fh+1(F`+1 + F`)(Fm+1 + Fm)(Fn+1 + Fn) + iF`+1(::)(::)(::)+ jFm+1(::)(::)(::)+ kFn+1(::)(::)(::)= (1 + i + j + k)Fh+1F`+1Fm+1Fn+1 + G(`; h; n;m) +G(m;n; h; `)+ G(n;m; `; h)+ (1 + i)Fh+1F`+1FmFn + (1 + j)Fh+1F`Fm+1Fn+ (1 + k)Fh+1F`FmFn+1+ (i + j)FhF`+1Fm+1Fn + (j + k)FhF`Fm+1Fn+1+ (i + k)FhF`+1FmFn+1+ Fh+1F`FmFh + iFhF`+1FmFn + jFhF`Fm+1Fn + kFhF`FmFn+1



Quaternion Recurrence Relations 27= (1 + i + j + k)Fh+1F`+1Fm+1Fn+1 + (i+ j + k)FhF`+1Fm+1Fn+1++ (1 + j + k)Fh+1F`Fm+1Fn+1+ (1 + i+ k)Fh+1F`+1FmFn+1 + (1 + i+ j)Fh+1F`+1Fm+1Fn+ (1 + i)Fh+1F`+1FmFn + (1 + j)Fh+1F`Fm+1Fn+ (1 + k)Fh+1F`FmFn+1+ (i + j)FhF`+1Fm+1Fn + (i + k)FhF`+1FmFn+1+ (j + k)FhF`Fm+1Fn+1+ Fh+1F`FmFn + iFhF`+1FmFn + jFhF`Fm+1Fn + kFhF`FmFn+1= �G(a; b; c; d)Fh+aF`+bFm+cFn+dwhere each of a, b, c, d equals 0 or 1, and where the initial conditions (2.2)have been applied. Included additionally in the nice summation expressionin the �nal line is the coe�cient G(0; 0; 0; 0) = 0.Repetition of (2.13) with (2.12) yieldsG(h+ 2; `+ 2;m+ 2; n+ 2) (2.14)= (1 + i + j + k)Fh+2F`+2Fm+2Fn+2 + G(`+ 1; h+ 1; n+ 1;m+ 1)+ G(m+ 1; n+ 1; h+ 1; `+ 1) +G(n+ 1;m+ 1; `+ 1; h+ 1)+ (1 + i)Fh+2F`+2Fm+1Fn+1 + (1 + j)Fh+2F`+1Fm+2Fn+1+ (1 + k)Fh+2F`+1Fm+1Fn+2+ (i + j)Fh+1F`+2Fm+2Fn+1 + (j + k)Fh+1F`+1Fm+2Fn+2+ (i + k)Fh+1F`+2Fm+1Fn+2+ Fh+2F`+1Fm+1Fn+1 + iFh+1F`+2Fm+1Fn+1+ jFh+1F`+1Fm+2Fn+1 + kFh+1F`+1Fm+1Fn+2= (1 + i + j + k)fFh+2F`+2Fm+2Fn+2 + 7Fh+1F`+1Fm+1Fn+1+ FhF`+1Fm+1Fn+1+ Fh+1F`Fm+1Fn+1 + Fh+1F`+1FmFn+1 + Fh+1F`+1Fm+1Fng+ 6G(h; `;m; n) + 2fG(`; h; n;m) +G(m;n; h; `) + G(n;m; `; h)g+ (1 + i)fFh+1F`+1FmFn + 3FhF`Fm+1Fn+1g+ (1 + j)�fFh+1F`Fm+1Fn + 3FhF`+1FmFn+1g+ (1 + k)fFh+1F`FmFn+1 + 3FhF`+1Fm+1Fng+ (i + j)�fFhF`+1Fm+1Fn + 3Fh+1F`FmFn+1g+ (j + k)fFhF`Fm+1Fn+1 + 3Fh+1F`+1FmFng+ (i + k)�fFhF`+1FmFn+1 + 3Fh+1F`Fm+1Fng+ (i + j + k)Fh+1F`FmFn + (1 + j + k)FhF`+1FmFn+ (1 + i+ k)FhF`Fm+1Fn+ (1 + i+ j)FhF`FmFn+1eventually.



28 A. F. HoradamParticulr illustrations of this recurrence relation, which may be veri-�ed using (2.12) and (2.13), areG(3; 2; 2; 3) = 24 + 18i+ 18j + 24kand G(4; 3; 2; 5) = 144+ 160i+ 120j + 150k:Equation (2.13), and more especially (2.14), are only established afterpainstaking and arduous e�ort. Other forms of the expressions exist, butthe ones given seem to be instructive, if somewhat inelegant, options. Var-ious permutations of h,`, m,n in the symbols G(: ; : ; : ; :) may for instancebe employed in an alternative representation. Scrutinizing the correspon-dence between the occurrence of the quaternionic units 1, i, j, k and thesubscripts h, `, m, n in that order reveals an underlying unifying pattern,as we have come to expect.Variation of the form in (2.14) may be derived as a special case of(3.14).If we imagine the numbers m, n and the quaternion units j, k to beentirely absent from our considerations, we are then dealing with complexnumbers and results (2.13) and (2.14) lead to those simpler recurrencesgiven in [3]. 3. GeneralizationLet us now turn our attention to a generalization of the results in thepreceding section.To do this we are guided by the model for generalizing GaussianFibonacci numbers, i.e. complex numbers with Fibonacci components, em-ployed in [7]. (This paper, [7], establishes summation identities involvingthe products of combinations of Fibonacci numbers and polynomials, Pellnumbers and polynomials, Chebyshev polynomials, and sine functions.)De�ne8>>><>>>: g(h + 2; `;m; n) = p1g(h + 1; `;m; n)� q1g(h; `;m; n)g(h; ` + 2;m; n) = p2g(h; `+ 1;m; n)� q2g(h; `;m; n)g(h; `;m+ 2; n) = p3g(h; `;m+ 1; n)� q3g(h; `;m; n)g(h; `;m; n+ 2) = p4g(h; `;m; n+ 1)� q4g(h; `;m; n) h; `;m; n�0(3.1)with8>>>>><>>>>>: g(0; 0; 0; 0) = 0; g(1; 0; 0; 0) = 1; g(0; 1; 0; 0; 0) = i; g(0; 0; 1; 0) = j;g(0; 0; 0; 1) = kg(1; 1; 0; 0)=p2+ip1; g(1; 0; 1; 0)=p3+jp1; g(0; 1; 1; 0)= ip3+jp2; : : :g(1; 1; 1; 0)=p2p3+ip1p3+jp1p2; g(1; 0; 1; 1)=p3p4+jp1p4+kp1p3; : : :g(1; 1; 1; 1) = p2p3p4 + ip1p3p4 + jp1p2p4 + kp1p2p3: (3.2)



Quaternion Recurrence Relations 29The pattern of the existence of subscripts of the real numbers p, inrelation to the presence of the quaternion units 1, i, j, k, and to the presenceof the 1's and 0's in the g(: ; : ; : ; :), should be clear from the informationgiven in (3.2).Analogously to the results in the previous section we deriveg(h; 0; 0; 0) = Uh; g(0; `; 0; 0) = iV`;g(0; 0;m; 0) = jWm; g(0; 0; 0; n) = kTn (3.3)g(h; 1; 0; 0) = UhV2 + iUh+1 (3.4)g(h; `; 0; 0) = UhV`+1 + iUh+1V` (3.5)g(h; 1; 1; 0) = UhV2W2 + iUh+1W2 + jUh+1V2 (3.6)g(h; `; 1; 0) = UhV`+1W2 + iUh+1V`W2 + jUh+1V`+1 (3.7)g(h; `;m; 0) = UhV`+1Wm+1 + iUh+1V`Wm+1+ jUh+1V`+1Wm (3.8)g(h; 1; 1; 1) = UhV2W2T2 + iUh+1W2T2 + jUh+1V2T2+ kUh+1V2W2 (3.9)g(h; `; 1; 1) = UhV`+1W2T2 + iUh+1V`W2T2 + jUh+1V`+1T2+ kUh+1V`+1W2 (3.10)g(h; `;m; 1) = UhV`+1Wm+1T2 + iUh+1V`Wm+1T2 + jUh+1V`+1WmT2+ kUh+1V`+1Wm+1 (3.11)g(h; `;m; n) = UhV`+1Wm+1Tn+1 + iUh+1V`Wm+1Tn+1+ jUh+1V`+1WmTn+1 + kUh+1V`+1Wm+1Tn: (3.12)Proofs of these identities are readily forthcoming.Paralleling the reasoning used in (2.13), and with (3.2), we determineits analogue to be the quaterniong(h + 1; `+ 1;m+ 1; n+ 1) = g(1; 1; 1; 1)Uh+1V`+1Wm+1Tn+1� q1g(0; 1; 1; 1)UhV`+1Wm+1Tn+1 (3.13)� q2g(1; 0; 1; 1)Uh+1V`Wm+1Tn+1 � q3g(1; 1; 0; 1)Uh+1V`+1WmTn+1� q4g(1; 1; 1; 0)Uh+1V`+1Wm+1Tn+ q1q2g(0; 0; 1; 1)UhV`Wm+1Tn+1 + q1q3g(0; 1; 0; 1)UhV`+1WmTn+1+ q1q4g(0; 1; 1; 0)UhV`+1Wm+1Tn + q2q3g(1; 0; 0; 1)Uh+1V`WmTn+1+ q2q4g(1; 0; 1; 0)Uh+1V`Wm+1Tn + q3q4g(1; 1; 0; 0)Uh+1V`+1WmTn� q2q3q4Uh+1V`WmTn � iq1q3q4UhV`+1WmTn� jq1q2q4UhV`Wm+1Tn � kq1q2q3UhV`WmTn+1= �(�1)a+b+c+dq1�a1 q1�b2 q1�c3 q1�d4 g(a; b; c; d)Uh+aV`+bWm+cTn+dwhere a; b; c; d= 0 or 1. Putting pi = 1, qi = �1 (i = 1; 2; 3; 4) in (3.13) (sothat Un = Vn = Wn = Tn = Fn) brings us back to the case for Fibonacci



30 A. F. Horadamnumbers set out in (2.13). Substitution of pi = 2, qi = �1 in (3.13) (sothat Un = Vn = Wn = Tn = Pn) produces the corresponding situation forPell numbers.Numerical checking should, from time to time, be carried out. Forexample, if h = ` = m = n = 2 in (3.12), we have on simpli�cationg(2; 2; 2; 2)=p1p2p3p4g(1; 1; 1; 1)� p1p2p3q4g(1; 1; 1; 0)� (3 similar terms)+ p1p2q3q4g(1; 1; 0; 0)+ (5 similar terms)� p1q2q3q4g(1; 0; 0; 0)� (3 similar terms)= �(�1)a+b+c+dq1�a1 q1�b2 q1�c3 q1�d4 g(a; b; c; d)U1+aV1+bW1+cT1+das in (3.13)= 8(1 + i + j + k) when pi = 1; qi = �1 (i = 1; 2; 3; 4)= G(2; 2; 2; 2) by (2.12)which we may later verify by using (3.14) with (3.15) whebn h = ` = m =n = 0.Coming next to the expression for g(h + 2; ` + 2;m + 2; n + 2) wenaturally get involved in some demanding algebra. To conserve space, thecomputational details, which can be supplied on request, are herewith sup-pressed. Eventually, with the aid of (3.1) and (3.2), we obtain the 81-termexpressiong(h+ 2; `+ 2;m+ 2; n+ 2)= �(�1)u+v+w+tq1�u1 q1�v2 q1�w3 q1�t4 g(u; v; w; t)��(�1)a+b+c+dpa1pb2pc3pd4qa01 qb02 qc03 qd04 Uh+a00V`+b00Wm+c00Tn+d00 (3.14)in which8>>><>>>:u = 1 =) � a0 = 1� a b0 = 1� b c0 = 1� c d0 = 1� da00 = a b00 = b c00 = c d00 = du = 0 =) � a = a0 = 0 b0 = 1� b c0 = 1� c d0 = 1� da00 = 1 b00 = b c00 = c d00 = d (3.15)with similar restrictions on v, w, t (a; b; c; d; a0; b0; c0; d0; a00; b00; c00; d00 = 0 or1). Included in the summation is the factor q1q2q3q4 g(0; 0; 0; 0) = 0, by(3.2), which is absent from the expansion.For example, the term involving g(1; 0; 1; 0) in (3.14) isq2q4g(1; 0; 1; 0) � p1p3Uh+1V`+1Wm+1Tn+1 �p1q3Uh+1V`+1WmTn+1�p3q1UhV`+1Wm+1Tn+1 +q1q3UhV`+1WmTn+1 � :If we set pi = 1, qi = �1 (i = 1; 2; 3; 4) in (3.14) whence Un = Vn =Wn = Tn = Fn, we deduce an alternative summation form for Fibonacci



Quaternion Recurrence Relations 31numbers in (2.14). Similarly, when pi = 2, qi = �1 are substituted in (3.14),the corresponding expression for Pell numbers is derived, since Un = Vn =Wn = Tn = Pn then.Nowhere in our calculations (except in (1.4)) have we had recourse tothe speci�c multiplicative features of the quaternion units given in (1.2).But, if we desired to try to emulate the applications in [3], to obtain rela-tionships among the Fibonacci numbers we should probably have need touse expressions like(1 + i+ j + k)�1 = 14 (1� i � j � k)(cf. (1.3) and (1.4)) which involves the employment of (1.2). Frailty of the
esh causes us to baulk at the daunting prospect of this development of [3],if indeed it were possible.Note on Nomenclature: The quaternions with Fibonacci compo-nents which we have been discussing might generically be referred to asFibonacci quaternions and generalized Fibonacci quaternions, though theauthor has elsewhere ([6], reference 2) de�ned these concepts somewhatdi�erently. Likewise we might speak loosely of Pell quaternions and gener-alized Pell quaternions.4. Concluding Comments1. Quaternions and GeometryComparison might be made between the four components ofG(h; `;m; n) occurring in (2.12) and the coordinates of a point in Euclidean4-space (i.e., space of 4 dimensions) given in [4].Quaternions can be used in the treatment of a projective model ofelliptic (non-Euclidean) 3-space. See [1]. Projective geometry over thequaternions (quaternion geometry), where each of the coordintes is a quater-nion, is also a subject for study.For other information on quaternions relevant to this paper consult[5] and [6], which also give reference to earlier articles on quaternions inthat journal.2. OctavesNo musical connotation is signi�ed by the use of \octaves" in thiscontext!An octave (or Cayley number) is derived from quaternions in the fol-lowing way. Firstly, we introduce a new symbol e (e2 = �1). Octaves arethen the numbers P +Qe (4.1)



32 A. F. Horadamwhere P and Q are quaternions subject to the conventions�P + Oe = PO + Qe = Qe: (4.2)The basis of the octave algebra is 1, i, j, k, e, ie, je, ke. The multipli-cation table of the octave basis elements is given in [1]. Like quaternions,octves have a norm (i.e., they form a normed division algebra over the realsof rank 8). Octave algebra is non-commuttive and non-associative. (Likequaternions, octaves form a vector space.)Just as quaternions have geometric applications, so do octaves, givingrise to octave geometry.Obviously, quaternions are a sub-algebra of the system of octaves. Onthe evidence of the work in this article, in which results for complex numberswere extended to corresponding results for quaternions, it would seem thatwith patience and adequate motivation our results for quaternions could begeneralized to results about octaves.Further information on octaves may be found in Artzy [1], Cayley [2],van der Blij [8], and Yaglom [9].3. Historical NoteQuaternions, as is well-known, were the discovery of the Irish math-ematician and astronomer, Hamilton, though this signi�cant breakthroughin aglebra did not come to him without much mental travail. One mightconsult \The Mathematical Papers of Sir William Rowan Hamilton", Vol.III Algebra, edited by H. Halberstam and R. E. Ingram (C.U.P. 1967) forthe details. [This volume also contains some useful historical informationon octaves.]However, Gauss had earlier, in 1819 or 1820, set down the multipli-cation table for quaternions, but he did not publish it. Nor did he developthe algebra of quaternions.Hamilton, on pp. xv and xvi of the source quoted above, describeshis electrifying discovery of quaternion multiplication in a letter to his son,Archibald. While walking along the Royal Canal, Dublin, with his wife onMonday, 16th October, 1843, on his way to preside at a Council meetingof the Royal Irish Academy, illumination suddenly came upon him. Herecords:\An electric circuit seemed to close; and a spark 
ashed forth,...I pulled out on the spot a pocket-book, which still exists, andmade an entry there and then. Nor could I resist the impulse{ unphilosophical as it may have been { to cut with a knife ona stone of Brougham Bridge, as we passed it, the fundamentalformula with the symbols, i, j, k;i2 = j2 = k2 = ijk = �1; : : : "
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