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1. Introduction

In a hopeful moment it was suggested [4] that the investigtion of com-
plex Fibonacci numbers undertaken in [3] might be extended to quaternions
(hypercomplex numbers). Tt is the purpose of this paper to examine the
degree to which this expectation is realized. Harman’s ideas in [3] are
extended in another way in [7].

A quaternion () with real components ag, a1, as, as and basis 1, i, j,
k is a number of the form

Q = 100 + ia1 + jaz + ]Cag (1&0 = Clo) (11)

where

2 — 52 :k’z:—l
{Z ! (1.2)

The conjugate Q of Q is
Q = lag — iay — jas — kas (1.3)

and the norm 1s

QQ = a + a? +al + a3 (1.4)

Quaternions form an associative, non-commutative division algebra of
rank 4 over the reals [1]. The quarternion algebra has no divisors of zero.
Complex numbers form a sub-algebra of quaternions when as = ag = 0.

Next, define the sequence of numbers {u, } by the recurrence relation

Up+2 = PUn41 — Un (77, > 0) (15)
Up = 0, Uy = 1 (16)
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where p and ¢ are arbitrary non-zero real numbers.

When p =1, ¢ = =1, uy, = Fj, (the n-th Fibonacci
number). If p = 2, ¢ = —1, then u, = P, (the n-th
Pell number).

Other examples of (1.5), with (1.6), do not especially concern us here.

Particular usage of (1.5) and (1.6), which will be important in subse-
quent work on generalization, is made for the sequences {Uy,}, {Vi,}, {W,}
and {T,} defined by the following recurrence relations and initial condi-
tions:

Unt2 = piUnt1 — 1Un Uy=0,U;=1 (1.7)
Vigo = p2Vigr — @2Ve Vo=0, Vi=1 (1.8)
Witz = p3Whnt1 — 3Wh Wo=0, Wiy =1 (1.9)
Toto = palnt1 — qaln Ty =0, Th = 1. (1.10)

Though in our defining recurrence relation (1.5) we restrict n to be
> 0, the use of negative subscripts may be occasionally useful. For instance,
one can easily establish that F_, = (=1)"~1F,, so that F_; = 1.

2. Quaternions, Fibonacci Numbers and the Symbol G

Extending the ideas if [3], let us define the recurrence relations

Gh+2,4,mn)=Gh+1,4,m,n)+G(h,{,;m,n)
G(h, 0+ 2,m,n)=G(h, 0+ 1,m,n)+G(h,{,;m,n)
h, £, mn>0
G(h,t,m+2,n)=G(h, ¢, m+1,n)+G(h,{,m,n)
G(h,t,m,n+2) = G(h,{,m,n+ 1)+ G(h, £, m,n) (2.1)

with 1nitial conditions

G(0,0,0,0)=0, G(1,0,0,0)=1, G(0,1,0,0) =1,

G(0,0,1,0) = j, G(0,0,0,1) = k,
G(1,1,0,0)=1+14,...,G(0,0,1,1) = j+ k (2.2)
G(l,l,l,O)_l—i—z—l—j,...G(O,l,l,l):i—l—j—l—k
G, 1L, 1) =1+i+j+k
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Inductive, or other, proofs may be employed to derive the following
results for the symbol G

G(h,0,0,0) = Fy, G(0,£,0,0) = iFy, G(0,0,m,0)= jFp,

G(0,0,0,n) = kF, (2.3)
G(h,1,0,0) = Fy + iFpps (2.4)
G(h,0,0,0) = FyFep1 +iFnp1 Fo (2.5)
G(h,1,1,0) = Fy + (i + j) Faps (2.6)
G(h, ,€,1,0) = FyFoyr + iFpp1 Fy + jFpir Fran (2.7)
G(hy £, m,0) = FyFyp1 Fopgr + iFppy FoFrg

+ i1 P iy (2.8)
Gh, 1,1, 1) =Fr+({{+j+k)Frp .
G(h,0,1,1) = FyFopr + iFpp1 Fo + (G + k) Fapy Frpy (2.10)
G(h, ,m, 1) = FyFyp1 Fopgr + iFppy FoFpg

+iF i Py Py + kP Frp1 Foo (2.11)
G(h, 6, m, 1) = FyFopy st Frgr + iFpi1 Fy Frpt Fast

+ i P P P + kv Fopi P I (2.12)

Thus, G(h,¢, m,n) is a quaternion with quadruple-product compo-
nents

FrFo1 Fmg1 g, Fapi FelFpi Foga,
FroiFopi FnFoyr, Fapr Pepi Frp1 B

(Compare this detail with corresponding information given in [4].)
Clearly, all the expressions for the (s are quaternions whose com-
ponents are Fibonacci numbers (Fy = 0, F; = 1) or products of Fibonacci
numbers. Obviously there is a pattern in the composition of these compo-
nents.
Some numerical examples of (2.12) are the quaternions

((2,0,1,3) =3 4 65 + 4k, G(1,2,3,4) =30+ 15: 4+ 205 + 18k,
G(2,3,1,4) =15+ 20i + 305 + 18k.

If one imagines m and n in (2.1) to be non-existent, then our results
reduce to those given in [3] for complex Fibonacci numbers. Indeed our
results (2.3), (2.4), (2.5) are identical with the nice results (2.5), (2.6),
(2.7) respectively in [3], mutatis mutandis.

Perhaps we shuld offer a proof of one of the above expressions relating

to G. Choose (2.12).

Proof of (2.12): Proceed by induction on n in the first instance. Assume

G(h,t,m,n) = F,G(h,t,m, 1)+ Fp,_1G(h, £, m,0). (o)
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This is clearly true when n = 0,n = 1 (since Fy =0, F_; = 1).
For n = k (constant), («) is

G(h,t,m k)= FrG(h, £, m, 1)+ Fr_1G(h, £, m,0). (8
Then

G(ht,mk+1)=Gh,t,m k) + G(h,t,m k—1) by (2.1)
= FpG(h,t,m, 1)+ Fy_1G(h, €, m,0)
+ Fr1G(h, £,m, 1)+ Fr_a(h, €, m,0) by ()
= (Fi + Fr—1)G(h, £,m, 1)+ (F—1 + Fr—2)G(h, £, m,0)
= Fr1G(h, €, m, 1)+ FiyG(h, £, m,0) since Fry1 = Fi + Fr—1.

Consequently, («) is true for n = k + 1 and hence for all n.
Next

G(h,t,m,n) = Fo{FpFrp1 Fop1 + iFp1 Fr Py + §Fht1 Fep1 P
+kFrp1Frp1 Pt}
+ Foci{FrFig1 Fong1 + iFhp1 FoF g1 + jFht1 Fey1 Fin }
by (@), (2.8) and (2.11)
= o P o+ iF i o P + 551 Fopn P P
+ kFhp1 Fop1 Fong1 P

on using Fp, + Fr_1 = Fri1.

So far so good. When, however, we seek to obtain a recurrence rela-
tion for the quaternion symbol G/(h, £, m, n) the algebra becomes somewhat
complicated. After expansion using (2.12), and appropriate algebraic ma-
nipulation and grouping, we find

Gh+1,4+1,m+1,n+1) (2.13)
= FppiFopol o Fnypo v iF oo 1 FroyoFgo + jF o FoqoF 1 Frgo
+ kFhpoF o Fnga P
= Frp1(Fep1 + F)(Frg1 + Fon) (P + Fo) + iFop1 () ()()
- Ft (D)) A+ kg (D)0
=(l+i4+ij+ k)1 Fop1 Py Fopr + G hynym) + G(m,n, b, 0)
+G(n,m, L h)
+ (1 + )1 Fop1 P Fn + (L 4+ g1 FeFmg1 o
+ 1+ k)Fhy1 FeFnFrga
+ G+ )1 P Fn+ (J+ ) FrFe Py Froga
+(E+ k) FrEipi P Frga
F e F P Py + i Fo B B + R e P By + kR P P
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=(1+i4+j+k) i FepiFng1 Fopr + (i 4+ + E)FaFrpr Fop1 Fopr +
+ A+ j+ k) Frp Fr Py Foga
+A+i+ )PPy FnFapi + (L+i4 ) Frp1 Fop1 P Fa
+ (1 + )1 Fop1 P Fn + (L 4+ g1 FeFmg1 o
+ 1+ k)Fhy1 FeFnFrga
+ G+ NP1 PP+ G+ B FaFoig1 FinFaga
+(+ k) FrFeFmyi Fopa
F P F P Py iy Fop1 Py + JFR F P oy + R Fo P P
=XG(a,b, e, d)PhyaFess FnteFrva
where each of a, b, ¢, d equals 0 or 1, and where the initial conditions (2.2)
have been applied. Included additionally in the nice summation expression

in the final line is the coefficient G(0,0,0,0) = 0.
Repetition of (2.13) with (2.12) yields

Gh+2,44+2,m+2,n+2) (2.14)
=(14+i4+ij+k)FPhpoFoyaFmyalny2+ G+ 1L A+ 1,n+1,m+ 1)
+Gm+1L,n+ LA+ 1,04+ 1)+ Gn+1,m+1,04+1,h+1)
+ (1 4+ D) FhpoFeroFmyp1 Fngr + (14 J)FagoFry1 Frgo Foga
+ (1 4+ k)FayoFey1 Frog1 Fryo
+ i+ ) Fopo e P+ (G + k) P Fop1 Frgo Frygo
+ (G + k) Frp1 FryoFrp1 Frgo
+ Fppo P P Pt +iP 1 Fogo P P
F+ i P Fogo g1 + i1 Frp1 P Py
=(+i+j+k){FryoFoqoFmpoFhge + TFp1 Fop1 Frg1 Fag
+ FpFop1 Fnpi P
+ Fri1 FeFp1 Fopr + Frpr Frpi P Fogr + Frp1 Feg1 P B}
+ 6G(h, &, m,n) +2{G(l, h,n,m)+ G(m,n, h, )+ G(n,m, L, h)}
+ (M + {1 Fop1 P Py + 3FR Fy Py Fogr b+ (14 5)-
{Fn1FeFng1 Fro + 3FnFog1 Frn Frga }
+ (M + b FPo1 FePmn Py + 3FnFe1 P Fn b + (i 4+ J)-
{Fnlos1Fms1Fn + 3Fnp1 FeFin Frga }
+ G+ PP oy +3F 1 Fen P Py + (i + k)
{Fnlbis1FmFos1 + 3Fnp1 FeFg1 Fu }
++ i+ PP+ (L + i+ k)P Frp Frn
+ 1+ i+ k)P FeFmi
+(1+i+ ) FPaFeFmFos

eventually.
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Particulr illustrations of this recurrence relation, which may be veri-

fied using (2.12) and (2.13), are
((3,2,2,3) = 24 4+ 18 + 185 + 24k

and

G(4,3,2,5) = 144 + 160i + 1205 + 150k.

Equation (2.13), and more especially (2.14), are only established after
painstaking and arduous effort. Other forms of the expressions exist, but
the ones given seem to be instructive, if somewhat inelegant, options. Var-
ious permutations of h,¢, mn in the symbols G(.,.,.,.) may for instance
be employed in an alternative representation. Scrutinizing the correspon-
dence between the occurrence of the quaternionic units 1, ¢, 7, £ and the
subscripts h, £, m, n in that order reveals an underlying unifying pattern,
as we have come to expect.

Variation of the form in (2.14) may be derived as a special case of
(3.14).

If we imagine the numbers m, n and the quaternion units j, k to be
entirely absent from our considerations, we are then dealing with complex
numbers and results (2.13) and (2.14) lead to those simpler recurrences
given in [3].

3. Generalization

Let us now turn our attention to a generalization of the results in the
preceding section.

To do this we are guided by the model for generalizing Gaussian
Fibonacci numbers, i.e. complex numbers with Fibonacci components, em-
ployed in [7]. (This paper, [7], establishes summation identities involving
the products of combinations of Fibonacci numbers and polynomials, Pell
numbers and polynomials, Chebyshev polynomials, and sine functions.)

Define
gh+2,£,m;n)=prglh+1,4,m,n) — qg(h, ¢, m,n)
g(h, L +2,m,n) = pag(h, 0+ 1,m,n) — qag(h, ¢, m,n)
h, £, mn>0
g(h, t,m+2,n) = pag(h,{,;m+ 1,n) — qzg(h, ¢, m,n) 3.1)
g(h, tymyn+2) = pag(h, &, m,n+ 1) — qag(h, ¢, m,n) '

with
4(0,0,0, 0)_0 9(1,0,0,0)=1,¢(0,1,0,0,0) = i, ¢(0,0,1,0) = j,
9(0,0,0,1)
9(1,1,0,0)=patip1, g(1,0,1,0) =ps+3p1, 9(0, 1, 1,0) = ips+jpa, . ..
( )
( )=

g(1,1,1,0) = paps+ip1ps+jpip2, 9(1,0,1,1) = papa+jpi1patkpips, . ..
9(1,1,1,1) = papaps + tp1p3pa + jp1pepa + kpipops. (3.2)
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The pattern of the existence of subscripts of the real numbers p, in
relation to the presence of the quaternion units 1, ¢, j, k, and to the presence
of the 1I’s and 0’s in the ¢(.,.,.,.), should be clear from the information
given in (3.2).

Analogously to the results in the previous section we derive

g(h,0,0,0) = Uha g(O,f,0,0) = ZWa

9(0,0,m,0) = j Wy, 9(0,0,0,n) = kT (3.3)
9(h,1,0,0) = Uy Vs + ilnpy (3.4)
(7, £,0,0) = UpVigr + iUns1 Vi (3.5)
g(h,1,1,0) = UpVaWs + ilUna Wa + jUns1 Va (3.6)
g(h,£,1,0) = Up Vet Wo + iUp 1 ViWa + jUn 41 Vi (3.7)
g(h, €, m,0) = UpVig1n Wing1 + iUp41 ViWiga

4 U1 Vigr Win (3.8)

g(h, 1,1, 1) = U VaWaTs + iUp 1 WaTo + jUp 1 VoTh

4 kU1 VoWV (3.9)
g(h, 0,1, 1) = Up Vi a WaTo + iU 1 ViWaTo + U1 Vi To

4 kU Vigr Wo (3.10)
g(h, €, m, 1) = Up Vg i Wing1 T + iUn 1 ViW1 To + jU 41 Vipn Win 1o

4 kUns Vit Wit (3.11)
gth,t,m,n) = UpnVigr W1 Tngr + iUn 1 ViWnp1 T 1

+ iU Vg it Wi 1 + kU1 Ve d Wi 1 (3.12)

Proofs of these identities are readily forthcoming.
Paralleling the reasoning used in (2.13), and with (3.2), we determine
its analogue to be the quaternion

gh+ 1,64 Lma Lnt 1) =g(1,1,1, )Uns1 Vet Wi Tags
—q¢19(0, 1,1, YU Vit 1 Win41 Trt1 (3.13)
—q29(1,0, 1, U1 VW1 Trgr — q39(1, 1,0, 1)U g1 Vegr Win T
—q49(1, 1,1, 0)Uns1Veg 1 Wina1 1,
+ q1929(0,0, 1, DUV W41 g1 + 01939(0, 1,0, DU Vi1 Wi Th 1
+ q1949(0, 1, 1, 0) Up Ve 1 Win1 T + 92439(1, 0,0, DY Up 1 ViWi Th 1
+¢2949(1,0, 1,0)Up 1 VeWini1 T + q3q49(1, 1,0, 0)Up 1 Vi1 Wi Ty
= 42¢394Un 11 VeWin T — iq193qaUn Ve 1 Wi T,
= 79192qaUp VW1 T — kq142q3Un ViWn T 41
= N(=1) g T g ™ (e, by ¢ d)Unga Vegs Wonge T

where a,b,¢,d=0o0r 1. Puttingp; =1, ¢ =—-1(:=1,2,3,4)1in (3.13) (so
that U, = V,, = W, = T,, = F},) brings us back to the case for Fibonacci
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numbers set out in (2.13). Substitution of p; = 2, ¢; = —1 in (3.13) (so
that U, = V,, = W, = T,, = P,) produces the corresponding situation for
Pell numbers.

Numerical checking should, from time to time, be carried out. For
example, if h =€ =m =n = 2 in (3.12), we have on simplification

9(2,2,2,2) =pipapspag(1,1,1,1) — p1pap3qag(1,1,1,0) — (3 similar terms)
+ p1p2¢3qa9(1,1,0,0) + (5 similar terms)
— p1q293949(1,0,0,0) — (3 similar terms)
= (=) et gy gy g(a b, e, U1 Vigs Wi T4
as in (3.13)
=8(1+i+j+k) whenp, =1 ¢=-1(:=1,23,4)
— ((2,2,2,2) by (2.12)

which we may later verify by using (3.14) with (3.15) whebn h=£¢=m =
n=0.

Coming next to the expression for g(h + 2,04+ 2, m + 2,n + 2) we
naturally get involved in some demanding algebra. To conserve space, the
computational details, which can be supplied on request, are herewith sup-
pressed. Eventually, with the aid of (3.1) and (3.2), we obtain the 81-term
expression

gh+2L+2m+2n+2)

= (- 1)utvtuttg T “Q% UQé Cai " 9w, v, w,1)-

S (=1)etttetdpapb e g0 o 0 4 Un g arr Vigon Wenaor Tnpan - (3.14)
in which

u:1:>{a/:1—a b=1-b /=1—¢c d=1-4d
a//:a b//:b c//:c d//:d
(3.15)

u:0:>{a:a’:0 V=1-b /=1—-¢c d=1-4d

a//:1 b//:b c//:c d//:d
with similar restrictions on v, w, ¢t (a,b,¢,d,a’,b', ¢/, d';a”, 0", " d" =0 or
1). Included in the summation is the factor ¢1¢2¢s94¢(0,0,0,0) = 0, by
(3.2), which is absent from the expansion.

For example, the term involving ¢(1,0,1,0) in (3.14) is

¢2049(1,0,1,0) P1P3Un 1 Viet Wing1 Tt —0103Un Vet Wi T
’ 23 UpVigit Wing1 Tp1 103U Vet Wi T ’

Ifweset p; =1, ¢; = =1 (i =1,2,3,4) in (3.14) whence U, = V,, =
W, = T, = F,,, we deduce an alternative summation form for Fibonacci
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numbers in (2.14). Similarly, when p; = 2, ¢; = —1 are substituted in (3.14),
the corresponding expression for Pell numbers is derived, since U, = V,, =
W, =1, = P, then.

Nowhere in our calculations (except in (1.4)) have we had recourse to
the specific multiplicative features of the quaternion units given in (1.2).
But, if we desired to try to emulate the applications in [3], to obtain rela-
tionships among the Fibonacci numbers we should probably have need to
use expressions like

(I+i+j+k) ' =21—i—j—k)

(cf. (1.3) and (1.4)) which involves the employment of (1.2). Frailty of the
flesh causes us to baulk at the daunting prospect of this development of [3],
if indeed it were possible.

Note on Nomenclature: The quaternions with Fibonacci compo-
nents which we have been discussing might generically be referred to as
Fibonacei quaternions and generalized Fibonacci quaternions, though the
author has elsewhere ([6], reference 2) defined these concepts somewhat
differently. Likewise we might speak loosely of Pell quaternions and gener-
alized Pell quaternions.

4. Concluding Comments
1. Quaternions and Geometry

Comparison might be made between the four components of
G(h, ¢, m,n) occurring in (2.12) and the coordinates of a point in Euclidean
4-space (i.e., space of 4 dimensions) given in [4].

Quaternions can be used in the treatment of a projective model of
elliptic (non-Euclidean) 3-space. See [1]. Projective geometry over the
quaternions (quaternion geometry), where each of the coordintes is a quater-
nion, is also a subject for study.

For other information on quaternions relevant to this paper consult
[5] and [6], which also give reference to earlier articles on quaternions in
that journal.

2. Octaves

No musical connotation is signified by the use of “octaves” in this
context!

An octave (or Cayley number) is derived from quaternions in the fol-
lowing way. Firstly, we introduce a new symbol e (e* = —1). Octaves are
then the numbers

P+ Qe (4.1)
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where P and () are quaternions subject to the conventions

{P—I—Oe:P (4.2)

O+ Qe = Qe.

The basis of the octave algebrais 1, 7, j, k, e, e, je, ke. The multipli-
cation table of the octave basis elements is given in [1]. Like quaternions,
octves have a norm (i.e., they form a normed division algebra over the reals
of rank 8). Octave algebra is non-commuttive and non-associative. (Like
quaternions, octaves form a vector space.)

Just as quaternions have geometric applications, so do octaves, giving
rise to octave geometry.

Obviously, quaternions are a sub-algebra of the system of octaves. On
the evidence of the work in this article, in which results for complex numbers
were extended to corresponding results for quaternions, 1t would seem that
with patience and adequate motivation our results for quaternions could be
generalized to results about octaves.

Further information on octaves may be found in Artzy [1], Cayley [2],
van der Blij [8], and Yaglom [9].

3. Historical Note

Quaternions, as is well-known, were the discovery of the Irish math-
ematician and astronomer, Hamilton, though this significant breakthrough
in aglebra did not come to him without much mental travail. One might
consult “The Mathematical Papers of Sir William Rowan Hamilton”, Vol.
IIT Algebra, edited by H. Halberstam and R. E. Ingram (C.U.P. 1967) for
the details. [This volume also contains some useful historical information
on octaves.]

However, Gauss had earlier, in 1819 or 1820, set down the multipli-
cation table for quaternions, but he did not publish it. Nor did he develop
the algebra of quaternions.

Hamilton, on pp. xv and xvi of the source quoted above, describes
his electrifying discovery of quaternion multiplication in a letter to his son,
Archibald. While walking along the Royal Canal, Dublin, with his wife on
Monday, 16th October, 1843, on his way to preside at a Council meeting
of the Royal Irish Academy, illumination suddenly came upon him. He
records:

“An electric circuit seemed to close; and a spark flashed forth,...
I pulled out on the spot a pocket-book, which still exists, and
made an entry there and then. Nor could I resist the impulse
— unphilosophical as it may have been — to cut with a knife on
a stone of Brougham Bridge, as we passed it, the fundamental
formula with the symbols, 7, j, k;

==k =ik =—1,...7
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