Ulam Quarterly — Volume 2, Number 3, 1994

Galois Groups for Polynomials Related
to Quadratic Map Iterates

(Dedicated to the Memory of Cornelius J. Everett)
W. A. Beyer and J. D. Louck

Theoretical Division
Los Alamos National Laboratory

Los Alamos, NM 87545

Abstract

We develop a theory of Galois groups of polynomials associated with
a one parameter family of quadratic maps of the real line into itself arising
in function iteration. A contribution to the Galois theory of polynomials is
the application of an old algorithm for finding Galois groups, an algorithm

seldom used and often dismissed as having no practical value. Let Pc[l](x) =

(xz(2— =) and Pc[n-l_l](x) = Pc[n](Pc[l](x)) forn=1,2,... with { = 2 in the
first case and ¢ an indeterminate in the second case. We consider the

Galois groups of the polynomials Pc[n](x) — 1 of degree 2”7. We show that
for { = 2 the Galois groups are the cyclic groups Cs= of order 27. For
¢ indeterminate, we use the algorithm mentioned above to show that the
Galois groups of Pc[n](x) — 1 are the wreath products [S2]” having order
22"=1_ S, is the permutation group on two objects. We conjecture that
these wreath products are the Galois groups for all positive integers { # 2.
We give a set of generators of [S3]” as permutations in Sar. Note that
1— Pz[n](x) = Ton(x — 1), Chebyshev polynomials of the first kind of degree
2. We show that Cyx, as a permutation group of the roots of Ton (2 —1), is
a subgroup of [S3]™ when the roots of Tsn (2 — 1) are labelled appropriately.

1. Introduction.

In this paper we develop the theory of Galois groups associated with
iterates of a one parameter family of quadratic maps of the real line into
itself. Galois theory of polynomials usually concerns itself with single poly-
nomials. Here we deal with an infinite family of polynomials arising in
function iteration. Our particular family is interesting because each mem-
ber of the family contains the same parameter that may be taken to be
fixed or to be indeterminate.
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In recent years function iteration has come to have a number of prac-
tical applications. A few of these applications are listed in Beyer, Mauldin
and Stein (1986) and May (1976). Function iteration is one of the sources
of models for the phenomenon called “chaos”. Function iteration has both
structural and metric aspects. The structural aspects go under such names
as maximal sequences, MSS (Metropolis, Stein, and Stein (1973)) sequences,
kneading sequences, and lexical sequences. Metric aspects of function it-
eration include geometric (Feigenbaum (1979) and Lanford (1982)) and
quadratic (Beyer and Stein (1982) and Wang(1987)) convergence in pe-
riod doubling, and Hausdorff dimension of sets arising in function iteration

(Brucks (1989)).

The topic of Galois groups of polynomial iterates should be regarded as
part of the structural aspects. In the past the structural aspects of function
iteration have provided insights into the metric theory and it is hoped that
similar insights may be obtained from Galois group theory. An intersection
of the metric and structural theory is found in the problem of bifurcation
values in quadratic iteration. This problem has been investigated by Bailey
(1993) and is discussed in more detail in Appendix C. See also Silverman

(1991, p. 565).

We first review the definition of a Galois group of a polynomial and
then review some previous results on the Galois groups of iterated and
composite polynomials. We then review quadratic iteration theory and
state the origin of our particular polynomial sequence.

The principal contribution of this paper to the Galois theory for poly-
nomials is the application of an old algorithm for finding Galois groups of
polynomials. This algorithm is based on one of the oldest algorithms for
Galois groups, which is generally dismissed as having no practical value.
We apply this algorithm to finding Galois groups of polynomials arising in
the iteration problem discussed below.

2. Galois Group of a Polynomial.

In this section we give a definition of the Galois group of a polynomial.
This material is taken from Garling (1988). Let R and S be two rings. A
one to one mapping ¢ from R to S is called a ring monomorphism if for all
r1 and ro 1n R:

o(r1 4 12) = ¢(r1) + ¢(r2),
o(r1r2) = ¢(r1)d(r2),
#(1r) = 1s,

where 1g and 1g are the multiplicative unit elements of R and S respec-
tively. A ring monomorphism of a field onto itself is called an automor-
phism.

Let K be a field. Let Aut K be the set of all automorphisms of K.
Denote by L : K a field extension of the field K i.e., L is a field containing
K as a subfield. Define

I'(L:K)={cecAut Llo(k) =k, Vk € K},
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which is the set of automorphisms of I that fix K. The set T'(L : K) is
a group under composition and is called the Galois group of the extension
LK.

Let f € K[z] (polynomial in the indeterminate # with coefficients in

the field K). We say that f splits over the field L if
fle) =AMz —a1)...(x — ap)

with A € K and «a; € L. The field extension L : K is the splitting field
extension over K for f if f splits over L and there is no proper subfield of
L over which f splits. Then T'(L : K) is called the Galois group of f. To
summarize: the Galois group of f is the (unique) subgroup of the group of
all automorphisms of the splitting field that fix the field K containing the
coefficients of f.

3. Finite Wreath Products.
Let G and H be permutation groups:
G CSp, HC Sp.

Let
HY = Hx Hx...xH

n

denote the n-fold direct product of H with elements
h=(hi,ha,... hy), hyj €H, j=1,2,... n.
Consider the direct product set
Gx H={(g.h)lg € G heH™M},

which contains |G x H| = |G||H|" elements. Next, we introduce the index
sets I,J and K defined by

I={1,2,....m}, J={1,2,...,n}, K={1,2,... . nm}.

We now consider the bijective mapping ¢ : I x J — K of the direct product
set I x J onto K by

8(i,j) =(i—Ln+j=he K icl jel.

Let ¢ € G and h; € H be given as explicit substitutions on the set J and
1, respectively:

g:j—kj, j€J. (1)

hi i el jel. (2)

Define the mapping
®: Gx H— Spm
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by the following rule. To each (g,h) € G x H associate the permutation
Pr € Spm given by the substitution on the set K as follows: Select k € K
and map k to pr € K by the sequence of operations given by

¢_1 L. (g,h) i
g (i,4) (), k) ————ps.

Thus, we obtain a unique permutation p € Sy, corresponding to (g, h):
p:k—pr, keEK.

The set of permutations ®(G x H) C Sy, is, by definition, the wreath
product permutation group G 1 H:

Gl1H =®(G x H).

Let us also note that, from the results given by Odoni (1985), one
can make the direct product set G x H into a group isomorphic to the
permutation group

(G x H) C Spm
by defining the product of (¢’, 2’) and (g, k) by

(g/ahllah/Za .. ahiz) ° (gahlahZa .. ahn) = (g/ga ;clhlah;thZa .. ah;cnhn)

for g given by ¢ : j — k;. Thus, we can also identify G H with {G' x H, e}.
Moreover, we see from the multiplication rule that the direct product group
H™) is isomorphic to the normal subgroup of {G x H,e} = G H given by
{(e,h)|h € H™}, where e = (1)(2)...(n) is the identity in G.

There is a very useful mnemonic for obtaining the mapping ®(g, h). We
first perform the map ¢=1(K) = IxJ and arrange the elements (i, j) € I x.J
in an m X n matrix array:

(;’P (;ag) : (;,“)
oo |®D G e
(m 1) (m,2) ... (mn)

For each (g,h) € G x H, we effect the permutation g given by (1) on the
column indices, followed by effecting the permutation h;, Vj € J, given
by (2) on the row indices of column j of the new matrix resulting from
the operation by ¢g. This gives a new matrix X’ whose elements are the
same as those of X, but arranged differently in the rows and columns. The
elements of the new array X’ are now put back into a single row of length
nm consisting of the first row of X’ followed by the second row, etc. We
finally apply the mapping ¢(I x J) to the elements of this nm-tuple to
obtain the relabelling in terms of 1,2,... nm. In this way, the nm-tuple
(1,2,...,nm) is mapped to an nm-tuple (k1, k2, ..., knm), thus giving the
substitution p € Sy, corresponding to (g, h).
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We have verified that the above definition of wreath product agrees
with that given by Odoni (1985) in the finite case. We give the above
definition explicitly because it is stated in a form more in keeping with our
method of implementation. One can also consult the definition of wreath
product given in Harary and Palmer (1973).

4. Review of Prior Work on Galois Groups of Sets of Polynomials.

Cremona (1989) shows, using a criterion of Odoni (1988) and by use
of a computer, that the nth iterate of the polynomial %+ 1 has the wreath
product [S2]™ of the symmetric group Sy with itself n times as its Galois
group for n < 5 x 107. Stoll (1992) extends this result and shows that
for the more general polynomial 2 4+ @, where a is an integer, that the
nth iterate has [S2]” as the Galois group for all n > 1 if either a > 0 and
a=1lor2mod4ora<0anda=0mod4.

Odoni (1985) discusses Galois groups of iterates and composites of
polynomials. His polynomials are assumed to be monic and generic. The
assumption of monicity makes it difficult to apply his results in our case.
There seems to be no easy transformation to convert our composite polyno-
mials to composites of monic polynomials. However, Odoni believes most
or all of his results hold for nonmonic polynomials. Odoni’s polynomials
are also assumed to be generic. A polynomial 2 4 sp_qa® 4 4 osg s
said to be a generic polynomial of degree k& over a field K if x,sg,...sp-1
are independent indeterminates over K. Some discussion of Odoni’s results
is given in Appendix B.

Grosswald (1978) discusses the Galois groups of Bessel polynomials
(also called Krall — Frink polynomials after the inventors of these poly-
nomials). Tt is shown that if a Bessel polynomial is irreducible, then the
Galois group is the symmetric group of degree equal to the degree of the
polynomial. It 1s conjectured that all Bessel polynomials are irreducible.

Bruen, Jensen, and Yui (1986) discuss polynomials with Frobenius
groups of prime degree p as Galois groups. They make use of the pth
Chebyshev polynomial of the first kind.

Morton and Patel (1992a and 1992b) carry out a program of investi-
gating the Galois groups associated with periodic points II,, of order n of
a polynomial map o(x) in k[z], where % is an arbitrary field. For example,
let ¥, ; be the field extension generated over « by IL,, that is, the least
field containing x and II,,. This field is the splitting field of the polynomial
O, ,(2) = Hdln(a[d](x) —J:)“(”/d). Here ol denotes the dth iterate of o(x)
and g is the Mobius function. The Galois group G = Gal(X, ,/«) is shown
to be a subgroup of S, VZ/nZ, where r = deg(®, »)/n. Z is the additive
group of integers. A method is given for calculating G which reduces the
problem to calculating the Galois group to a certain distinguished subfield L
of X, 5. Several sufficient conditions are given for G to be Gal(L/k)1Z/nZ.

Vivaldi and Hatjispyros (1992) give an important discussion of Galois
groups associated with periodic points of rational maps.

5. Quadratic Map.
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In this section, we give briefly the background of the problem leading
to the study of the Galois groups of the equations under consideration in
this paper.

The parabolic map P : IR — IR of the real line IR defined by

Piz— Pr(z)=(x(2—2),r€IR, (3)

where ¢ is an arbitrary parameter in IR, is a paradigm for illustrating the
behavior, called chaotic, of a large class of mathematical functions. The
properties of the family of iterated polynomials

{(PM)n=1,2,3,.. }, (4)
where
P@) = PP (P(x)) ), (5)
N ——’

n

play a role in the bifurcation theory of the map (3). This theory has to do
with sudden changes in the form of the periods of P;(x) as ¢ is varied. The
real roots of the polynomial

P (@) —x (6)

yield all periods of Pr(z) of length », where r divides n.
In Bivins, Louck, Metropolis and Stein (1991), the critical points of the

polynomial P[n](x) play a role in the discussion of shift-maximal sequences,
also called MSS or lexical sequences. These critical points are determined
by the equation

4 ol —
which may alternatively be written as
n—1
20" I1 [1 - PC[S](x)] =0,
s=0

where PC[O] = z. This leads to consideration of the roots of

P )~ 1, (7)
a polynomial of degree 27. It is useful to display the first three of these
polynomials:

—(x? 4+ 20x —1, (n
—Prt 43 =202+ Da? + 42 — 1, (n
—(Ta® 87" —4C8(6¢ + 1)a® + 8(5(42 4 3)a®
—2¢H(8C 4 247 + 2¢ 4 D + 8¢ AR + 2¢ + 1)2?
—4¢3 (4¢P + 2¢ + Da? + 8¢z — 1. (n = 3)

D
2)
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When ¢ = 2, these polynomials become the Chebyshev polynomials of the
first kind Tox(2 — 1), which are irreducible (Odoni (1992)). Hence, for
indeterminate (, the polynomials above are irreducible.

As is done in Bivins et al. (1991), it is useful to discuss the roots of

[n]

(7) in terms of the 2" inverse functions of PC . These 2™ inverse functions

may be denoted by fc[n](a; z), where o is an element of the Abelian group
¥, of order 2":

EHISZXSQX...XSQ,

n

where S5 1s the symmetric group on 2 elements and x denotes direct prod-
uct. The group X, can also be realized by

Y, ={0=(01,02,03,...,04)|each o; = £1}, (8)

with group multiplication defined by component-wise multiplication.

The inverse functions of Pc[n](x) are given by

fc[n](a; z) =

1 1
1—1—0’1 1—E 1—|—0’2 1—2(1—1—03\/1—...—

and satisfy the equation

SN
TN
—
+
Q

3

—

|
SN R
N
~—

PR o) = 2 (10)

for each of the 2" quantities fc[n](a; z). If a quantity under a radical in (9)
is positive, we choose the square root to be positive. Otherwise, we choose
the square root (a,b) of a complex number to have a > 0ifa #0 or b > 0
if a =0.

The roots of (7) are thus

{z{1(9)lr € B}, (11)
where
o) = (1), (12)
Let us note, for completeness, the we can define the action of X,, on the
roots J:[Cn](a) by
o(2{l(0") = 2N (00"), (13)

where 0,0’ € ¥,,. Thus, X,, transforms the root set (11) onto itself.
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[n]

The inverse graph of PC is the point set:

Gy = {(x, fc[n](a; x)) o € X,z € 1R, fgn](a;x) real}.

This graph is important for the study of the bifurcation properties of the
parabolic map. See again Bivins et al. (1991).

It is useful to note the recursion property:

e =14a1-7,

n 1 e
fc[](a;x):1+01¢1—zfc[ 1](0’;1‘), n=23 ... (14)
where
o= (01,0"), d €X_1. (15)

JFrom (9), (12), and (14) with # = 1, we obtain the corresponding relation
between the roots of Pc[n](x) — 1 and Pc[n_l](x) —1:

i

J:[Cl](a) =1+oy/1——,

oy, o'y =14 00y 1 - %x[cn_l](a’). n>1. (16)

Because each polynomial P[n](x) — 1 has roots given by radicals, it is
natural to inquire about the Gafois groups of these polynomials, especially
because these groups must be solvable. Such a study is useful because one
has not only the possibility of obtaining the Galois groups of an infinite
family of polynomials of different degrees, but also the different Galois
groups of the polynomials depending on the parameter .
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6. A Number Theory Lemma.

We need the following lemma for the discussion of the case { = 2.

LEMMA 1. For n > 2, the only integers in the set

3k —1

are the odd integer

3T
Gn = gn+1
and the even integer
b — 321
n= gn+1

Equivalently, for & € A, the only solutions of the congruence relation
3% =1 mod 27*!

are k = 2"~ 1 and k = 2". Moreover, with & = 271, the ordered sets B,
given by

B, = {3°ht1 geht2 3t o012, ..

are all equal mod 271! and the integers in the ordered set By are all distinct
mod 27 F1

This lemma follows from the theorem of R. D. Carmichael given in
1910. This theorem is stated and proved in Knuth (1981), pp. 19 and 20.
7. Chebyshev Polynomials.

For ( = 2, the polynomials 1 — Pz[n] are the Chebyshev polynomials
of the first kind 7o~ (2 — 1) (see Oldham and Spanier (1987)). We use this

relation in §8 and in §9 below to prove that the Galois group of 1 — Pz[n](x)
is the cyclic group Chan. It is useful to display the formulae and roots for
the general polynomials T, (z):

To(x) = cos(narccos(z)), —1<z<1

Tn<x>=§[n2/2] - ("‘.j)<—1>f'<2x>”-2f,

n— i
j=0 J

where [n/2] denotes the integer part of n/2.
The Chebyshev polynomials of odd order and of order a power of 2
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will be useful to our work. The first few of these are:

To(x) =1,

Ti(x) = x,

To(x) = 227 — 1,

Ts(x) = 42 — 3,

Ty(z) = 82* — 8z + 1,

Ts(z) = 162° — 202> + 5z,

Tr(x) = 642" — 1122° 4 562° — T,

Ts(z) = 2562% — 1122° + 3282* — 6422 + 2.

The roots of T,,(x) are:

25 —1
t; = cos (u),jzl,z...,n.
2n

In this section we prove:

THEOREM 1.
1-PM@) = Ton(z — 1). (17)

Proor. We prove this relation by induction on n, noting first that

1- Py =22 4o+ 1=2c—1)> =1 =Ty (x—1).

Assume that (17) holds with n replaced by n — 1. We will show that it
holds for n. The roots ozg»n_l] of Tyn-1(y) are given by

o' = cos(lt ), gl = (2 - Dry2r, i=1,2,.. 277 (18)

i
By the induction hypothesis, the set of roots

n—1 n—1 n—1

{oz[1 ], a[2 ], e oz[zn_l]}
18 .

{2 o) = 1lo’ € B}
hence,

x[zn_l](ag) —-1= cos(qSE»n_l]), i=1,2,..., 21

where o is the ¢th ¢ in X,_; in an appropriate ordering of X, _1. The set
of roots of 1 — Pz[n](x) is

{x[Zn](O-la U/)|Ul == Zl:l, 0'/ € En—1}~
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By (16), we have

Hence, the set of roots of 1 — Pz[n](x) is

{1 + sin ((/)E»n_l]/Q) ,1—sin (¢£n—1]/2)

i = 1,2,...,2"—1},
which is equal to the set

{1 + cos (¢£n]/2)

i:1,2,...,2”}.

Thus, the roots of 1—P2[n](x) are the same as those of Ty= (#—1). Since these
two polynomials have the same leading term 22" ~'22" | they are identical.
This completes the induction. =

It is interesting that one has an identity

cos (%) =1- fc[n](a; 1),

which expresses the cosines on the left in terms of radicals on the right
(given in (9)), where one must still determine the identification of index j
with o to make the result fully explicit.

8. Properties of Roots of Chebyshev Polynomials.
In this section, we present certain properties of roots of Chebyshev
polynomials needed for the subsequent development on Galois groups.

Let « denote any root of T,,(#) and define the polynomials y;(«) in
this root to be the odd-order Chebyshev polynomial

yi(a) = Toioq (), i =1,2,.... (19)

We refer to this set of polynomials in the root « of T;,(z) as the universal
root set of T,, (). The reason for this terminology is apparent from Theorem
2 below.

We require two well-known properties of Chebyshev polynomials that
are easy consequences of trigonometric identities. These are the composi-
tion rule and the multiplication rule:
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and

2T (2)Ton (2) = T (2) + Tho—om (),

It follows immediately from these two relations that each polynomial
yi(«) in the universal root set of T, satisfies the following relations:

T (yi(e)) = 0,

yoyi(@) = —yz_ip1(a), 1<i< g, n even, (20)
yzyi(a) = —yi—z(a), i> g, n even, (21)
..on—1
ynTJrl_H(oz) = _ynT-}—l_Z»(OZ), 1<:i< 5 1 odd, (22)
..oon—1
y#_l_i(a) = _yi_nT—l(O[), i> 5 " odd. (23)

For n odd, we note that
Yuts (o) = 0.

For the discussion of the consequences of these relations, it is convenient to
define the ordered sets of universal roots of 7}, by

Rs = {yns-l—l(a)a yns+2(04), sy yn(s-l—l)(a)}a s = Oa 1a 2a B}
Ro=A{yn(a), yn-1(a),...,yi(a)}.

Using these relations and definitions, it is straightforward to prove:

THEOREM 2. Independently of which root & # 0 T, () is chosen, the
universal root set of T,,(y) is given by

{yi(a)|i: 1,2,..} = RgUR L URyU ...,
and it consists of cycles R, given by

Rs = Ry, seven,

—
Rs = Rp, sodd.

Furthermore, the ordered set or period Ry itself contains exactly the roots
of T,,(x) as given by

Ro ={yi(a), ..., yz(a), —yz(a),...,~yi(a)}, neven, n>2, (24)

Ry ={yi(a),. ..,ynT—l(O[),ynTl(a), _ynT—l(O[), oo, —y1(e)}, nodd, n>3.
(25)
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ProoF. Aside from the application of the (20) - (23), the only additional
point needing proof is that the ordered set Ry contains exactly the roots of
To(z). The structure of Ry as given in (24) and (25) is a consequence of
(22) and (23), so that if the roots in the respective sets

{yi(a),y2(a), ... ,yz(a)}, neven, n>2, (26)

{y(a), y2(a), .. .,ynT—l(O[)}, n odd, n > 3, (27)

are distinct, then the proof is complete. Assume that two roots in the set
(26) are equal, say the ith and the jth root, where it is no restriction to
take ¢ > j. Then, we must have

Pij(e) = Tai1(e) = Taj—1(a) = 0

for each root v of T}, (¢). Thus, the polynomial P; ;(x) of degree 2i—1, which
is at most n — 1, has the n distinct roots « as roots, which is impossible.
Therefore, the assumption of the equality of two roots in the set (26) is
false and all the roots must be distinct. Similarly, one proves that the roots
in the set (27) are distinct. =

It is a quite remarkable result that the roots of the Chebyshev polyno-
mials are themselves Chebyshev polynomials, as described in Theorem 2.
We use this result in the next section with n replaced by 2”.

9. Automorphism Group of the Roots of Pz[n](x) - 1.

In this section, we prove that the Galois group of Pz[n](x) — 1 is isomor-
phic to the cyclic group Cs~». However, we will work with the Chebyshev
polynomials T3 (z) because their roots are slightly simpler to express:

B (2¢ — D)m . n

h = CO8 [——§E;T—— , —-1,2,...,2 .

The field extension of the rational field @ to the splitting field L of the
polynomial T5=(z) is given by

2" —1
L:{Zaio/ aie@}, (28)

i=0

where « is any root of Th=(x). Because of Theorem 2, the order of the
Galois group is 2". See Garling (1988), p. 95. The quantities in (28) are
clearly closed under addition and closed under multiplication when reduced
by use of the identity

Let o be the largest root of Tan(«r). Define the transformation ¢ : L —

L in which an element a = Zzl_ol ara® € L undergoes the transformation

2" —1

Pla) = > a (y2(a)” (30)

k=0
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The transformation ¢ is a Galois automorphism because it is a one to one

mapping, for Ve, y € L it satisfies ¢(x + y) = ¥(2) + ¢¥(y) and ¢¥(zy) =
()¢ (y), and finally it preserves the ground field @. See Stewart (1989),
pp. 39-40. The element ¢(a) can be expressed in terms of the basis of

L:{l,a,0? ..., a”"~1} by expanding (yi(oz))k in powers of « and reducing
to powers less than 2" by using 7o« (o) = 0.

Define the iterated transformations ¢!¥! of ¢ by
T Y Ll Y S N S TR
with 1 = 4. We show below that [2"] is the identity.

For the next theorem, it is convenient to partition the positive integers
into the following subsets of integers:

AO = {1’2’.”’2774}’
Ay ={2nts=tponts=lyg 9" F) s =1,2,....

We are now able to prove:

THEOREM 3. The set of automorphisms ¢l : L — L, i =1,2,...,2"
forms a group under composition that is isomorphic to the cyclic group of
permutations of the roots generated by

yi(a) = a =y (), y2(a) = yp(a),. . yon(a) = Yjon (@), (31)

where now « is any root of Ty~ and where j; € {1,2,...,27} with j; the
integer given by

Ji—1=j;mod2", for 3i— 1€ AgUAsUALU. ..,
3i—1=2"—-j;+1mod2", for 3i—1€ Ay UA3U...,

with j; = 0 identified with 2”.
Proor. Replace n by 2”7 in Theorem 2 so that

Ry ={yi(a)li € A}

Then, by Theorem 2, we have

R, = Ry, seven, (32)
—
Rs = Ry, s odd. (33)
Because
yi(yZ(a)):ySi—l(a)a 1= 1a2a"'a (34)

the integer j; in the substitution ¢ — 3¢ — 1 — j; is the subscript of the
root
ygi_l(a) e R URTURyU.. .,
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after accounting for the cycling of the ordered sets given by (32) and (33).
This gives the j; stated in the theorem.

We next show that the integers ji, & = 1,2,...,2" in (31) are distinct,
so that this substitution is indeed a permutation, and we then show that it
is a 2"-cycle. Relation (34) is equivalent to the composition relation

() = T (@) = Tye(a) = Yz (a) k=12,

To determine the permutation defined by this relation, we must determine
the cycle set R; to which the root yuy, () belongs and then identity it
2

with the corresponding root in Ry. This is solved as follows, using (32) and
Define the integers r; by

3F 41
2

=7, mod 2", n>2. (35)

Then
3F4+1

Ysry (@) = Y, (), if € AgUAUA,. ..,

3F 41

Ysigr (@) = Yon_py 41 (@), if € AfUAsUAs, . ...
2

To show that the integers r; in (35) are distinct, we rewrite (35) in the
equivalent form
3% = 2r) — 1 mod 2"
By Lemma 1, the integers in the ordered set
{7“1,7“2,...,7°2n—1} (36)
are all distinct, and the integers in the ordered sets
{Tszn—l_l_l, Tgan—149,..., 7”(5+1)2n—1}, 5= 0, 1, 2, ce

are all equal to the integers in the first ordered set s = 0.

We also must show that the integers in the set
{rp, 2" =+ 1k =1,2,...,2" 1} (37)
are distinct. Assume that two integers r; and r; are such that
ri+r; =2"41. (38)

By adding the congruence relations (35) for k = ¢ and & = j, we deduce
the relation

3+ 1)=0mod 27 i<je{1,2,...,2"},
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where it is no restriction to take ¢ < j. Because 27+ does not divide 37, it
must divide 37 7* + 1; that 1s, we must have

3¥ = —1mod 2"+, forsome k € {0,1,2,...,2" "1 —1}.
But this is impossible, because by squaring this relation, we obtain
32% =1 mod 21,

and the only integer solution of this relation having k& in the prescribed
domain is given by Lemma 1 to be k = 272, and the number

2n—2

1
3 + n>?2

d":W’ 2

is not an integer. That d, is not an integer follows from the relation

d, (32"‘2 - 1) —an, 1> 2,

where a,, 1s the odd integer defined in Lemma 1. Because 32" 1is even,
d,, cannot be in integer. Thus, relation (38) is false, and the integers in the
set (37) are distinct.

To show that the integers in the set (37) define a single cycle of length
as given explicitly below, we next show that

vz (o) = a,
and that 2" is the smallest iterate for which one obtains «. The proof is

again a consequence of Lemma 1, which asserts that for k € {1,2,...,2"7}
and r;, = 1 in (35) the only solutions are k = 2"~! and k = 2". But

32" 41

5 €A UAsU. ..,

because the integer a, (see Lemma 1) is odd and

32" 41
2

€EAgUAU.. .,
because the integer b,, (see Lemma 1 ) is even. Thus, we have
Yan=1 4, (@) = yon(a),
2

yaznTﬂ(a) = yi(a).

Because the dimension of the field L as a vector space 1s 2" and by
Theorem 3 a cyclic group of order 2” is a group of automorphisms of L,
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this group is the Galois group in question. See Garling (1988, Theorem
7.1). "

Thus, we have

THEOREM 4. The Galois group of Thx(y) and therefore of Pz[n](x) —1is
isomorphic to the cyclic group Can =< (1,2,...,27) >.

We now give an algorithm that calculates the orbit of a under it-
eration by the automorphism ¢ generated by the root transformation:
a — y2(a) = T1 (). This algorithm depends on the composition and mul-
tiplication properties of the odd Chebyshev polynomials. The algorithm
is carried out using +7,(«) for odd p in place of y;(«). We denote the
quantity £7;,(«) by sf = g where s denotes sign +1 and f denotes Tp(«).

To start, put s = +1, f = 1, and ¢ = sf. Then for ¢ : 2 through 27,
carry out the following number theory procedure: if f < 27 then f — 3f
and s — s, else (f — |2"*t1 —3f|,s — —s,9 = sf). The resulting sequence
of positive and negative integers can be regarded as the orbit of o under
the iterated automorphisms of .

We obtained the following orbits of o for n = 2,3,4, and 5. The symbol
+k denotes +Tj(«).

n=2:1,3,-1,-3 1.

n=3:1,3,-7,5-1,-3, 7, -5, 1.

n=4:1,3,9,-b -15, 13, -7, 11,

-1,-3,-9,5,15,-13, 7, -11, 1.
n=>5:1,3,9, 27, -17, 13, -25, 11, -31, 29, -23, 5, 15, -19, 7, 21,
-1,-3,-9,-27,17,-13, 25, -11, 31,-29, 23, -5,-15, 19, -7, -21, 1.
Such calculations were carried out on the computer symbol system DOE-
MACSYMA up to n = 20 with orbit length 22° =~ 1,000, 000. Each calcu-
lation was terminated at -1 because after -1 the orbit repeats, but with the
signs changed.

The cyclic group of permutations of the roots (t1,%a,...,t2n) corre-
sponding to the group of automorphisms of the field L (with o = ¢1) that
fixes the ground field has as its generator the 27-cycle obtained from the
above sequences of integers by first mapping the odd integers to integers,
using 2¢ — 1 — ¢, and then adding 2" to all nonpositive integers:

(1,3,-1,-3)— (1,2,0,—1) — (1, 2,4, 3),
(1,3,-7,5,-1,-3,7,-5) — (1,2,-3,3,0,—1,4,-2) — (1,2,5,3,8,7,4,6).
It is useful to express, as above, the permutation of the subscripts of

the roots,
( 1 2 ... 2 )
JioJ2 ... Jan )

given in Theorem 3 as the 2"-cycle s = (s1,82,...,832=), which then is
also the generator of the cyclic group of the roots (¢1,ta,...,%2n) and is
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isomorphic to the group of automorphisms of the field L. It follows from
the results in the proof of Theorem 3 that for £ =0,1,2,...,27~!

s e if dj, 1s even,
L= 127 41— if dy is odd,
where .
3 1
2+ =dp2" +rp, 1<rp, <2" - 1.

10. Factoring Algorithm for Finding Galois Groups.

A classic theorem for finding Galois groups is reviewed briefly in this
section, because we use it subsequently for consideration of the Galois
groups of Pc[n](x) —1.

We consider perhaps the earliest algorithm for finding Galois groups:
the clearing irrational algebraic quantities algorithm. (An irrational al-
gebraic quantity is a solution, not in @, to a polynomial equation with
coefficients in Q.) We also call the algorithm the van der Waerden algo-
rithm because of the clear exposition of 1t in his book, van der Waerden
(1970). Tt is usually dismissed as having little practical importance. We
make practical use of this algorithm. It is stated in §8.10 of van der Waer-
den (1970). To review, let f(x) € Alz] with A a field and f of degree n.
Let the zeros of f be «;, i = 1,...,n. Let

0= aix1+ ...+ age,,

where the z; are indeterminates. Form the product

F(z,z)= H (z — s.0), (39)

$:€Sn

where S, is the symmetric group on n symbols and s, is a permutation
of the indeterminates x1,xs,...,z,. Factor F' into irreducible factors in
Alz, 2]:

F(z,z) = Fi(z,2) ... Fo(z, ). (40)

Fach of the factors in (40) can be written as

F; = H (z — s.0),

SZEAJ'

where Ay, Aa, ..., A, is a partition of S,,. See Garling (1988, p. 156). Label
the subscripts of the A; so that A; contains the identity e and thus is a
subgroup of S,,. Let GG denote the group of permutations that carries Fj
into itself. The other A; are right cosets of G relative to A;. (A right coset
of the group G relative to A; has the form A;g with ¢ € G.) This fact
about cosets seems not to appear in books on Galois theory.

The theorem of Galois theory (van der Waerden (1970), p. 189) is
then:
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THEOREM 5. G is the Galois group of f: Ta(f).

A similar result is given by Dehn (1960, chapter 11, p. 143), Dickson
(1960, p. 164), and Jacobson (1964, p. 109). Dickson and Jacobson assume
that f(x) is monic. Dickson takes the permutation group of Fj as the
definition of the Galois group. The polynomial F} is called the resolvent
polynomial of f(z), according to Dickson (1930 p. 162).

11. A Basic Theorem on Clearing Radicals.

A basic result for the removal of the radical symbol from the elementary
symmetric functions is given by Stein and Zemach (1987, p. 397, Theorem
1). One should also consult Problem 5 on page 104 of Hille (1962). The
theorem of Stein and Zemach was partly an outgrowth of work of Beyer

and Heller (1987).

We require a significant generalization of the Stein-Zemach theorem.
The group X,, introduced in eq. (8) underlies the structure of the general-
ization, as it also does the Stein-Zemach theorem. We define for each o =
(01,02,...,0n) € By, and any set of indeterminates y = (y1,Y2,. .., Un),
the action of ¢ on y by

gy = (Ulyl,Uzyz, . ~~,Unyn)~

Next, let Q(y) denote an arbitrary polynomial in the y; over a field that is
not even in any ¥;. Then, we have:

THEOREM 6. The polynomial

P(Y,y)= T[ (v = Q(oy)

cEX,

is an even function of each y;; hence, if we choose y; = /w;, then

P<Y’\/E)’ \/E:(\/w_l’\/w_Q""’\/E)

is a polynomial in the indeterminates w;. Moreover, for the given poly-
nomial @, the polynomial P(Y,y) of degree 2" in Y is the polynomial of
smallest degree in Y that is even in each y;, hence clears radicals in the w;.

Proor. For each
o =(01,02,...,0,) € Xp,

we define ol € 3, by
ol = (01,02, ...,05-1,—0i,Cit1,...,0n), Vie{1,2,...,n}.

Because, as o runs over all elements in ¥,,, so does each ol it follows that

II v -0 = ]I (Y—Q(a[ily)), Vie (1,2,... 1)

ocEX, olilex,
Thus, Vi € {1,2,...,n},

P(YaylayZa"'ayn) = P(YaylayZa"'ayi—la_yiayi-l—la'"ayn);
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that is, the polynomial P(Y,y) is invariant under the substitution y; —
—y;, Vi € {1,2,...,n}. Moreover, because the coefficient of Y2"~* in
the expansion of P(Y,y) is (—1)* times the elementary symmetric function
er(oy), these elementary symmetric functions themselves are even in each
y;. That the polynomial P(Y,y) is the one of the smallest degree that is
even in each y; follows because X, is the smallest group that reverses the
sign of each y; exactly once. m

The Stein-Zemach theorem is the special case

Qy) = Zy

of Theorem 6. That Theorem 6 is indeed a generalization of the Stein-
Zemach follows from the example

Q(y) = ayr + byz + cy1ya,
for n = 2, where a, b, ¢ are arbitrary constants.

12. The Wreath Product Permutation Group [S3]".

In this section, we give explicitly a realization of the wreath product
group [S3]™ in terms of permutations in Ss~. This is done by implementing
for the case at hand the definition of the wreath product group given §3.
In terms of that notation, we have

G=[S]""", H =25,
so that
[Ss]" = GUH = [So]* ™ 1 Ss, n>1, (41)
with [So]! = Ss.
We assume that we have obtained

[S]" " C Sans

as an explicit set of permutations in Sy»-1. We next introduce the direct
product set

2n—1

[So]" 7 % (52)” T = {(mos)lp e[S s (S2)7 Y, (42)

where
5:(51,52,...,52n—1)652 X Sy X ...x Ss.

2n—1
The number of symbols N,, in the set [S2]™ is 22"=1 a result easily obtained
by iterating N,, = 22n_1Nn_1 with Ny = 2. So |[S2]*| = 22" -1,
The index mapping ¢ from the set I x J with I = {1,2} and J =
{1,2,...,2"71} to the set {1,2,...,2"} is given by
¢: (1,j)—j, j=12...2""
(2,5)— 2"t 44 j=1,2,...,2" "L
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The easiest way to obtain the permutations in Ss» corresponding to the
elements in the direct product set (42) is to use the mnemonic of §3 and
place the integers 1,2,...,2" themselves into a 2 x 2*~! matrix array in
accordance with the mapping:

1 2 oot

O I =gt gretyg o

(43)

An element
p:j—p;, i=1,2...,2""

of [S2]® C Sgn-1, permutes the columns of the array (43). It clearly has
the unique extension p’ to the permutation in Ss» given by

/

pii—pp, j=1,2,...,2"7
2"y —ontgp j=1,2,..0 200

In this way, the group [S5]? =1 C Syn—1 with permutations p € Syn—1 has the
unique extension to its isomorphic version as a subgroup of S;». We denote
this isomorphic group by the same notation, but write [S9]" ™! C Sax to
keep the context clear.

Next, consider

sj €5 = {(1(2),(1,2)}, (44)

and -
5= (51,89, ,8,...,89m-1) € (S9)* . (45)

Because the permutation p € [S5]? ™1 C Syn—1 first permutes the columns
in the array (43), and then the S; generator (1,2) in (44) interchanges
the entries in column j, we see that this S» group is isomorphic to the S,
subgroup of Sy generated by the transposition (p;, 2"~ + p;); that is, the

unique extension of Sy defined by (45) to San is ng) defined by

SY) =< (p;, 2" 4+ p;) > C Son.

Because this relation holds for each 7 € J, we find that it is the transposi-
tions in Sy» defined by

T =(,2" " +j), j=12,..., 2! (46)

that correspond to the permutation (1,2) € Sy in the various components
of the direct product (42) (the order is unimportant).

We conclude from these results the following:

THEOREM 7. The wreath product permutation group [S2]” may be defined
recursively in terms of the wreath product group [Ss]"~! C Ssn-1 and its
unique extension [S3]" "1 C Sox by

[SZ]n =< [SQ]H_laTlaTZa .- 'aTZ"_l >
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This recursive definition of [S2]” gives a unique determination of the
elements of this group as permutations in Sa». The determination goes as
follows. We start with [S3]! =< (1,2) > and continue with n = 2, 3:

4)>=< (1,2)(3,4),(1,2,3,4) >= Ds,
),(1,2,3,4,5,6,7,8),(1,5),(2,6),(3,7),(4,8) >
),(1,2,3,4)(5,6,7,8), (1,2,3,4,5,6,7,8) >

These results suggest the following: Define the permutations L; € San, ¢ =
1,2,...,n, by

Li=(1,2)(3,4)...(2" —1,2"),
Ly =(1,2,3,4)(5,6,7,8)...(2" — 3,2" —2,2" —1,2"),

Lno1=(1,2,...,2" " H2" 1 +1,...,2"),
Ln=(1,2,...,2").

Thus, L; is defined by inserting parentheses in the obvious way into the

sequence 1,2,...,2". Note that L; above should be called Lgn], but in all
cases below, unless explicitly stated, the superscript on L; is suppressed.

THEOREM 8. The wreath product group [S2]" as a subgroup of Ssris given
by
[Sz]n =< Ll,Lz, .. .,Ln > .

Proovr. The proof is by induction on n. The theorem holds obviously for
n = 1. We assume that the theorem holds for n replaced by n — 1; that is,
in terms of generators the wreath product group [S3]"~! as a subgroup of
Sorn-1 18 given by

[So] =< plr=t =t gt

There are two steps in moving from n — 1 to n. The first step, be-

cause we are dealing with the wreath product [S2]"~1 1 [S2]!, is to extend
Lgn_l],i =1,2,...,n—1, to Lgn],i = 1,2,...,n — 1, using the unique
extension described above, and then suppress the superscript. We then ad-

join the 2-cycles (1,2" 71 4+1),(2,2"71+2),...,(2"71,2") to the generators
Ly, Ls,...,L,_1 and obtain, with all permutations in Syn:

[Sa]" =< L1, Loy ooy Lnet, (1,277 4 1), (2,277 4 2), .., (277, 27) >
We must now prove that

[So]" =< Ly, Lo, ..., Ly > . (47)

The identity
Lp_1(2"H 2" = Ly, (48)
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shows that
<L1,L2,...,Ln>C [Sz]n (49)

It follows from (48) that
(21, 2"y = L YL, €< Ly, Lo, ..., Ly, > .
Then, observing that we may write
Lyt=@" 2" —1,...,2,1),
it is casily verified, in turn, for ¢ = 1,2,...,27~! that
T; = LpyTi1 Ly,

where we define
TO == Tzn—l .

Therefore, ' '
T = (L) To( L)'

Thus, each 2-cycle T; belongs to < Ly, La, ..., L, >, and therefore
[Sz]n Cc< Ll,Lz,...,Ln>. (50)

We conclude from (49) and (50) that (47) holds. =
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13. The Galois Group of Pc[n](y) — 1 is the Wreath Product [55]”

for Indeterminate (.

The principal result about the Galois group of Pc[n](y) — 1 for indeter-

minate ¢ is stated and proved in Theorem 9 below. (We change the variable
z to y because z is used differently below.)

We denote by z the 2"-tuple
2= (21,T2,...,83n-1,Ban-141, ..., L),
where the z;, j = 1,2,...,2" denote the 27 distinct roots of (7) as given

by (11). We impose the labelling scheme between the integers j and the
roots x; to be such that

Tj+ xgm-1y; =2, j=1,2,...,2"7 L

Otherwise, we leave arbitrary the explicit identification of the roots x; with
the J:[Cn](a) in (12). For the 2”-tuple u of indeterminates u;,

= (U1, U, ..., Ugn—1,Usn-141,...,Usn), (51)

and the 27-tuple z of roots z;, we define the symbol (u, z) by

o
(u, ) = Z U ;.
i=1

(We find it convenient to introduce the more explicit notation (u,z) for

n

Z?Il u;z; in place of # used earlier in §10.)

T T
p_<i1 i . izn) € San,

we define the action of p on the 27-tuple by

For each

plty, oy ..oy tgn) = (Uy, Uiy e ooy Uisn )

(The permutation p effects substitutions on the subscripts, not on the place-
ment of the letters.) The action of p on the 2"-tuple of roots # is similarly
defined. Thus, one has the following identities:

(pu,x) = (u,p~'z) = Z(Pu)z’l‘i = Z ui(p~ )i,

(pu,px) = (u, ).

With these notational preliminaries, we now state and prove a principal
result:
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THEOREM 9. For indeterminate {, the Galois group of the polynomial
Pc[n](x) — 1 is the wreath product group [S2]".

Proor. The proof is by induction on n. For n = 1, it is easy to show
that the Galois group of Pc[l]_l(x) is S = [S5]! for indeterminate ¢ and
also for { = 2. We also carried the determination through manually for
n = 2 using the polynomial Pc[z](x) — 1. The results were that for { = 2 the
Galois group is C4 and that for indeterminate ¢ the Galois group is [S2]?
in consequence of the fact that the square root symbol va is removed from

the eighth degree polynomial

I[I & —(u2), (52)

pE[S2]?

and [S2]? is the smallest group with this radical removal property. In (52),
we have indeterminates u = (u1, ug, us, uq) and the root labelling given by

x’ x!
rp =1+ 1—?1, o =1+ 1—?2,
x" x!
r3=1-— 1—?1, za=1- 1—?2, (53)

o+ =2, izl =2/C.

Here 1, x5, x3, x4 are the roots of Pc[z](y) — 1 and «{, «% are the roots of

Pc[l](y) — 1. No other properties of the roots are needed to carry through

the indicated calculations. Here Cy and [Ss]? are the explicit permutation
groups realized by the generators L; = (1,2)(3,4) and Ly = (1,2,3,4):

Cy=< Lo >, [52]2 =< Ll,Lz > .

Thus, Cy is a subgroup of [S]?, and the factors that clear radicals for ¢ = 2
are exactly those from (52) corresponding to this subgroup.

The general induction hypothesis is stated as follows: Consider the
polynomial Pc[n_l](y) — 1 and label the roots such that z} + x’zn_Q_I_Z. =
2,6 =1,2,...,2""%(n > 2). Effect this root labelling scheme at all levels
down to that given by (53). Then, the polynomial in X given by

[T &= (54)

p€[S2]—1t

clears radicals by removing the symbols N from all expressions when mul-

tiplied out. Moreover, [S5]"~! is the smallest group that removes radi-
cals in this manner. Here u’' = (u},ub, ..., u},_,) are indeterminates and
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xf = (xf, 2y, ... 2, ) is aset of roots labelled as described, each of which
is a function of the parameter (, the value of which is unspecified.

We next use from (16) the fact that the roots z; (¢ = 1,2,...,2") of
Pc[n](y) — 1 are related to the roots #} (i = 1,2,...,2"71) of Pc[n_l](y) -1
y

i =1+ ay, ron-iyy=1— /oy, i=1,2,...,2"" 1 (55)
where the «; are defined by

ai:1—%,i:1,2,...,2"—1. (56)

/
I3

Substitution of
vi=C(1—a;) or 2’ =((1 —a)

into (b4) gives
[I x-Gua)==0""" ] &-@ua), 7
pE[S2]m—! PE[S2]™1

where
2n—1

X'=)"up - X/
i=1

In obtaining this expression for X’ we have used

2n—1 2n—1
Do)=Y uf, eachp e [Sa]" 7
i=1 i=1

Thus, the induction hypothesis implies that the polynomial (in X' of degree
|[S2]" 1)

[I & =@ a) (58)

pE[S2]"~"
clears all radicals when multiplied out, this being true for arbitrary inde-
terminates v’ and o = (@1, @va, ..., aga-1), where each «; is a function of ¢
as given by (56).
Consider next the polynomial defined by

I x-(Pux). (59)

Pe[Sa]™
To show the relation of the polynomials (58) and (59), we use
[Sa]" = [Sa]" 1 1.5, (60)

and the root relations z; + @gn-14; = 2, i = 1,2,...,2"~1. We obtain

2n—1

(u,x):Zui—l— > viai = A+ (v, Va), (61)

i=1
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where
Vi = U — Upn-1yy, t=1,2, LTt
gn
62
% (62)
i=1

Let us next interpret the action of the group [S2]® = [Sa]?~1 1S in
(59), now accounting for relation (61), using

P=(ps), pe[S]'!, se () .

For this, we introduce the 2 x 27~! matrix U, which is written in terms of
its columns by

U= (U,Us, ... Uspis)

UZ:( vi ,),i:1,2,...,2”—1.
Uzn—l—i‘l

A permutation p of the columns of U yields the same permutation of
(v1,v2,...,vgn-1); that is, if

where

pU = (Uilanza .- "Ui2n—1)?

then
pv = (Uilaviza sy UiQn—l)'

A permutation s; of the two elements in a column U; of U is the same as
the operation o;v; on component v; of v. Thus, for P = (p, s), we have

(Pu,z) = A+ ((p,0)v,Va),
where, by definition,
(p,o)v = (01Up,, 020p,, . . ., Uzn—lvp2n_1)

and, for s = (s1,82,...,89n-1), we have o; = 1 for s; = (1)(2) and o; = —1
for s; = (1,2). Thus, (59) may be written as

I[I &=ua2y= T ] &"-(po)wva)), (63)

Pe[S3] 0ES n1 pE[S2]n—1
where
gn
X” =X — E U; .
i=1

Consider the factor

I[I &-owve)= [ & =@vova).

pe[S2]n—1 pE[S2]n—1
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The right-hand side of this expression is to be compared to (58), which we
now rewrite in the form (since X’ and ' are indeterminates):

[[ &"=@va)=Y-Q(), (64)

p€[S2]—1t
where
Y = (X//)N, N = |[S2]n_1|,

N

Qo) = QX" v.0) = S (X" H (=D ex (y(v, ).

k=1

The ej in this last result denote the elementary symmetric functions in
y=(y1,Y2,...,Yn), where the y; = y;(v, @) denote the quantities in the set

{yp(v, a) = (pv, a)|p € [Sz]"_l}

in any arbitrary order. The important application of the induction hypoth-
esis is that the quantities @Q(«) are polynomials in the ;. Using (64) in
(63), we obtain

[[ &—@uz)= I v -Qva)).

pE[Sa]™ ocEYHn

We now apply Theorem 6 to conclude that the polynomial

[T & —(ua)

p€[S2]™

clears radicals by removal of the symbol NE and it is the minimal degree

polynomial that does so, because Q(«) is not even in any «; for indetermi-
nate v. This completes the induction and proves that the group [S2]” = G is
the smallest group that removes the radical symbol va from the polynomial

[T = (gu,2)), G C S

geG

We conclude that the wreath product group [S5]” is the Galois group of
the polynomial in Theorem 9. =
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14. Labelling of Roots and Clearing of Radicals.
The generic theory developed in §13 shows that for indeterminate ¢
the Galois group of Pc[n](x) — 1 is the wreath product permutation group

[Sz]n =< Ll,Lz,...,Ln > .

We have also shown in §9 that for ( = 2, the Galois group of Pc[n](x) -1
is 1somorphic to Cy» =< L, >. We also gave in Theorem 3 an explicit
realization of the cyclic group for { = 2 as a permutation group acting on
the roots t; = cos(2i — 1)x/2"*L. In order to compare these ( = 2 results
in §9 with the generic theory, when specialized to { = 2, we need to use the
same labelling of roots. This is carried out in this section.

The permutation group [S2]™ =< L1, La, ..., L, > acts on the indices

of the roots & = (1, xa,...,22n) of Pc[n](x) — 1 labelled such that
Tt eonoig; =2, i=1,2,...,2"" 1 (65)

but otherwise the labelling of the roots is arbitrary. This is because the
group [S2]™ removes the symbol Na from the polynomial

I[I &x—(upe)= [I (X-(pu2)), (66)

pe[S2]™ p€[S2]"

when multiplied out.
The other way, of course, to remove a radical is for the quantity under
Vo to be a perfect square: \/y? = y. It is the second way in which radicals

are cleared for the ( = 2 theory, where the analyses carried out in §8-9
show that the polynomial

[T x—pahy= JI (X = (v’ a") (67)

pES> pELS>
not only clears radicals, but is also irreducible. In this expression
R A ’
u' = (ul,uh, ..., U )

denotes any set of indeterminates. The cyclic group in (67) is realized as
the permutation group

Chn =< s>. (68)
where s = (81, 82, ..., 82n) is the 27-cycle defined in (71) below.

Consider next the form that (66) takes under the relabelling of roots
given by ¥’ = mx, where m € Ss» is an arbitrary permutation. Because the
indeterminates u’ can be relabelled in any way whatsoever in that relation,
we can take v’ = mu without loss of generality. We obtain

[[ &-w 2= T] (X =0, (69)

PELS> plELS >
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where

We next consider the detailed relationship between the ( = 2 results
in §7 to §9 and the indeterminate ¢ results in §13. The permutation s =
(s1,82,...,82n), which is the generator of the cyclic group C%. in (68),
is obtained explicitly by the following procedure as described in §9. We
determine the integers dp and r; in the relation

3F 41
2

=di2" 4+, 1<, <21, k=0,1,2,.... (70)
Then, in consequence of Lemma 1, the infinite sequence of integers

(7“0, 1,72, .. )

is periodic in the 2"~1 distinct integers (ro, 71,72, ..., ron-1_1).
The entries sp41 in the 27-cycle s = (s1, $2,...,82») are then defined
by
I EY if dj, is even; . n_
Skl = {2” 1oy ifdpisodd F=0LZ.20—10 (7D

In consequence of the periodicity property of the rg, it also follows that the
infinite sequence of integers

(s1,82,...) is periodic in (s1,s2,...,82n), (72)

where the s; are distinct and a rearrangement of 1,2,...,27. We use this
property below in establishing relation (80).

The permutation group C%, acts on the roots &’ = (2}, 25,...,25.) in
(67), which are related to the roots in (65) in the following way: We first
have

where
21— 1
t; = cos [( ;n+1)ﬂ-] ,i=1,2,.,207 (74)
21— 1
ton_jy1 = —cos [(;n%] ,i=1,2,,20h (75)

A set of roots satisfying relation (65) is given by
T = Thi_y, Ton-ip; = Tha_gi4e, 1=1,2,...,2"7 (76)

because
/ / —_
Toi_1 + Ton_9ipo = 2.
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The roots (1, ®2,...,22n) are the real parts, respectively, of the complex
points, labelled counterclockwise in order, and separated by equal angles of
7/2"~1 with z; at positive angle /271

gntl

2; = Re z; = Re W—Dm/2"0 15— 1 9 9m, (77)

(We give below a geometric interpretation of the action of the cycle permu-
tation s = (s1,82,...,52r) on the roots t = ({1,%a,...,f2n) defined in (74)
and (75)).

It follows from the relations (76) that the 2”-cycle p = (p1, pa, . . ., par),

which acts on the roots z, is obtained from s = (s1, sa, ..., s2» ), which acts
on the roots ¢, by the following rule
Sptl ; ;
_ s, if s3 18 odd, _ n
sk—>pk_{2n+1_%k’ if s is even, k=0,1,2,...,2 1.

Using this result and (71), we obtain the following relations for the entries
in the 27-cycle p = (p1,pa, ..., pan):

refl dy even, ry odd,;

2
gn—1 4 —”;’1, dy odd, ry odd;

Pr+1 = on 41 B k=0,1,2,...,2" = 1. (78)

dy even, rj even,

-l — o, dy odd, rp even;

This is a complete description of the cycle permutation p, which acts on
the roots x, in terms of the divisors dj and remainders r; in (70). Tt is a
significant result for this work.

Relations (73) and (76) define a unique permutation m € San such
that / = ma and, correspondingly p = m~!sm, but we do not require
m explicitly. Instead, we show below how to utilize (78) directly to show
that p € [S2]™. This result then implies that there exists a ¢ € [S2]” such
that p = ¢L,q~ ', because p and L,, have the same cycle structure. It then
follows that s = (mq)L,(mq)™', and from this that s’ = ¢L,q¢™', which
appears in (69), so that the group < s > in (69) is given by

< s >=< L, >= Chn.

Thus, the proof of Theorem 10 below is a direct consequence of the proof
that permutation p defined by (78) is an element of [S,]".

Using (78), we now show that p belongs to the wreath product per-
mutation group [S2]”. For this, we establish a remarkably simple rule for
constructing the permutation P € [S3]"*! directly from the permutation
p € [Sa]” defined by (78). (In making this statement, we anticipate that
these permutations, in fact, belong to the respective wreath product groups,
as proved below.)

We construct the permutation P by exactly the rule (78) now applied
to 27*!. Thus, we define the divisors Dj and remainders R, by

3F 41

=D2" T 4 Ry, 1< R, <2°tl -1, k£=0,1,2,.... (79)
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The formula for Pyyqin P = (Py, Pa, ..., Part1) is now obtained simply by
replacing n by n+1 and all lower case letters by upper case letters in (78),
excepting k which is a running index. By using the relations

dk‘IQDka Rk:rka 0§k§2”_1’
dy =2Dp+1, Ry =2"+r, 2" <k<2tti_q,

we can express the relations for the Py 41 in terms of pr41. This calculation
is a bit tedious, but straightforward, and gives the following simple result:

P — ] Pt if 7, and Dy, have same parity, (80)
b+l = Pr4+1 + 27, if v, and Dy have opposite parity.
These relations are valid for all £ = 0,1,2, ..., when one accounts for the

periodicity property (72). This is the key result for proving the following
theorem.

THEOREM 10 . The cyclic permutation group < s’ > in (69) is a subgroup
of the wreath product permutation group [Ss]® =< Li,Ls,..., L, > in
consequence of < s’ >=< L, >.

Proor. We need to prove that p € [S2]™. The proof is by induction on n,
using relation (80). We assume that

P = (plaPZa"'aPZ") € [SZ]na

where p is defined by (78), and where we note that for n = 1 and n = 2 the
result is true; that 1s,

(1,2) € Sy = [Sa]*, (1,4,3,2) € [So]? =< (1,2)(3,4),(1,2,3,4) > .

The unique extension of p to its corresponding element in [S3]"*! is given

by
P = (plaPZa .. 'ap2") _>p/ = (plaPZa .. 'ap2"ap1+2nap2+2na .. ap2"+2)n € [Sz]n-l—l'

We next prove that P is conjugate to p’ by an element in [S5]?*!. Indeed,
the element in question is the product of 2-cycles given by

Tit1 = Pr41,Pe+1 +27), if rp and Dy have the same parity. (81)

Thus,
T = H Thy1,
3

where the product is over all Tj 1 defined by condition (81). The permuta-
tion 7" is thus a product of certain of the 2-cycles (for n replaced by n+1)
defined by (46) in §12, each of which is an element of [S5]"T!. We have the
identity

P=T"1T.



Galois Groups for Map Iterates 33

The proof of this last relation follows immediately when one recognizes that

it is precisely the interchanges of integers given by (81) that converts p’ into
P.u

Tt is useful to observe that the 2”-cycle s defined by (71), and corre-
sponding to the automorphism of the splitting field L generated by (30)
is not a rotation by /2”1 of the unit circle containing the complex root
representatives z; defined in (77). Instead, this permutation corresponds
to rotations of these roots onto themselves in groups of 4 that can be de-
scribed in terms of “colored” roots. In terms of z;, these 4-tuples of root
representatives are given by

M n—2
(Z3~2"_2-|—i-|—1a Z9.9m=24i41,%1.27=24i41, Zi+1, )a t= 1a 2a B 2 )

where for ¢ = 2772 the first representative satisfies Zony1 = 21. In terms of
complex points w; with {; = Re w;, these same 4-tuples of root representa-
tives on the unit circle are given by

(wl,wzn—l,wzn,wzn—1+1),
< n
(wZi,wzn_1+2i,wzn_2i+1,w2n_1_2i+1), 1= 1,2,...,2 —1. (82)

These sets of 4-tuples are to be rotated independently of one another
in accordance with the following rules. We describe the situation in terms
of the complex points w; corresponding to the roots ¢;. We use the color ¢;
to mark the first four points in the first 4-tuple in (82), the color ¢s to mark
the second 4-tuple (¢ = 1), the color ¢3 to mark the next 4-tuple (i = 2),
and so on. The color ¢yn-2 will mark the last 4-tuple. We now rotate
clockwise and separately these colored 4-tuples by the indicated angles,
where ¢ = 7/27"~! denotes the basic angle between adjacent roots:

colore; by (2" + 1)p = ¢
color ¢g by (27 — 3)¢

color ¢; by (2" —4i+ 5)¢

color ¢gn-2 by 5¢

With some work, it may be shown that the resulting permutation of the
roots w;, or equivalently, of the ¢; is exactly that given by the cyclic per-
mutation s defined by (71).

It is of use to inquire just how the fourth degree polynomial (69) for
n = 2 clears radicals for ¢ = 2, while for ¢ # 2, it requires the eighth degree
polynomial (66) with n = 2 to remove the radical symbol VA One can do
this by the direct procedure of multiplying out (66) with n = 2 for general
¢. One encounters a single factor that retains the radical:

¢?-(-1L (83)
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Thus, radicals are not cleared for generic ¢, but remarkably for { = 2 the
radical (83) is 1. One can show that for no positive integer ¢ other than 2
is (83) an integer.

One can carry out this type of detailed analysis forward to, say, n = 3.
We now have an eighth degree polynomial to consider for C's, but the full
polynomial for [S5]3 is of degree 22°~1
radical (83) and the additional one:

VI =3C+ T +33 - (-1, (84)
which again is 1 for ¢ = 2. Calculation shows that for no other {, 1 <
¢ < 500, is (84) an integer. Determining if there are any positive integer
solutions other than ¢ = 2, w = 1 to the Diophantine equation (% — 3¢® +
C* 4+ 3¢3 = (% — ( — 1 = w? may be a readily solvable problem with some
help from the computer.

= 128. One encounters again the

15. Galois Group Calculations on MAPLE.

Use was made of the symbolic computer program MAPLE to verify
that for n < 5 the groups generated by the generators in §13 have order
22"=1_ Note that 231 = 2147483648. MAPLE had no difficulty calculating
such a large order.
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Appendix A

Galois Groups in the van der Waerden Algorithm.

In this appendix we show that the set A; in Garling (1988, p. 156) is
the Galois group of the equation under consideration there; i.e. A; = G.
In our notation, this equation is written

r

Fly,u,z) = H (y — (pu,x)) = HFi(y,u,x),

PESH i=1

where the polynomial F; is defined by

Fi(y,u,2) = [] (= (aiu, ).

a;€A;

The sets Ay, Ao, ..., A, are a partition of S, and A; is chosen to contain the
identity permutation, but no other properties of the A; are stated explicitly
by Garling. Tt is then proved by Garling (1988, p. 157) that the group G
of all permutations g such that

iy, gu,z) = Fi(y,u, x) (85)

is the Galois group of the given equation. We show that A; = (| and,
hence, also that the A; i = 1,2,...,r, are cosets Gk; of G in S,,. First, we
observe from (85) that

Arg =44, Vg eGh

that is, a19 € Ay, Va1 € Ay, Vg € . Because A; contains the identity, it
contains each g € G; 1. e. A1 D G. Because Garling shows (1988, p. 157)
that (G is the Galois group, his polynomial H (top of p.157) may be written

H(y,u,z) = H(y — (u,gz)) = H(y — (gu, 2)).

geG geG

Garling shows that H is a product of the polynomials F; defined above
containing at least Fy. We conclude from this that A; C G, and therefore,
A1 = G, because we have shown above that A; D G. =

Appendix B

Odoni’s Theorem.
In this appendix we quote a lemma and a theorem from Odoni (1985)

that give evidence, but not a proof, that the Galois group of Pc[n](x) -1

is a subgroup of [S3]". The following is Lemma 4.1 of Odoni (1985). Tt
is assumed that K is a field and that f(X),¢(X) € K[X] are monic
polynomials of positive degree.
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LEMMA (Odoni). Let f(g(x)) be separable (distinct roots) over K, and
let deg f =k, deg ¢ = I, with k,{ > 1. Then f(X) is also separable over
K. Let F be Galf(X)/K, identified with a subgroup of the permutations
of its zeros in the usual way. Then there 1s an injective homomorphism of

Galf(¢(X))/K into F[S].
THEOREM (Odoni). Let F' be any field of characteristic 0, let &£ > 2, and let
F(X) be the generic monic of degree k over F'. Then every iterate F,(X)
is irreducible over K (the extension of F' generated by the coefficients of
F), and, for every n > 1, GalF, (X)/K = [Si]™.

Identity F with P.. Assume (falsely) that F is monic. Identify f(X)

with P;(X)—1 and ¢(X) with Pc[n_l]. Assume (again falsely) f and g are
monic. It would then follow from the Theorem of Odoni that the Galois
group of Pc[n](x) — 1is [S2]".

Let us define the monic polynomial Qén)(x) by

Q) = (1= Py e

Then, it follows from this definition that

QU (@) = @ (P (@) /¢

that is,
Q@) = (@ o P (@), (36)

where P; is the nonmonic quadratic polynomial defined by (2). Because
we have proved that the Galois group of Qén) is the wreath product group
[S2]™ for arbitrary n, it follows that the Galois group of (86) is

[So]" T = [S2]" 1 So.

Because the Galois group of F; is S, we find that the Galois group of
the composition of the two functions in (86) is the wreath product of the
respective Galois groups. Thus, the conclusion of Odoni’s theorem holds
for the case at hand despite the fact that the right-hand side of (86) entails
the composition of nonmonic polynomials. Odoni (1992) has conjectured
that this would be the case for generic (. Notice that the result fails to be
true for { = 2, despite the fact that we can write

Tzn = Tzn—l OTQ.
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Appendix C.

Calculation of Bifurcation Values

Let fr(z) ;= ra(l — ) and let fin](l‘) be the nth iterate of f, (). The
third bifurcation point is the smallest value of r, say rs, such that with
some x the pair:

(@) = @ (87)
()
=1
Ix (88)
of simultaneous equations are satisfied for n = 3 and for no smaller n.

Nicolas (1992) noted that this problem could be solved by eliminating the
variable # between (87) and (88) by using the RESULTANT function in
either MACSYMA or MAPLE. (For reasons not clear, Bailey (1993) and
Nicolas (1992) used -1 in place of 1 on the right-hand side of (88)).

Table I shows the form of

dfiM(2)
dx

Res,(r) = RESULTANT(f!"(z) — x, —1,z)

for n = 1,2,3. In each case Res,(r) is a power of r times a polynomial
Pr(r) of degree k in r with a nonzero constant term. The factor of the
bifurcation polynomial Py(r) that yields the bifurcation value is also given
in Table I.

n Res, Factor BifurcationValue
1 7 Pa(r) r—1 1
2 r9 Ps(r) r—3 3
3 7225 Py (r) r? —2r —5 3.449.= 1++/6
4 ? ? ?

Table 1. Bifurcation points for the quadratic mapping.

Note that although the third bifurcation value might have been a root
of a polynomial of minimal degree 54, it actually is a root of a quadratic
polynomial, which is a surprise. What happens for higher values of n?
Could Galois theory provide some insight?
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