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notation established above the conditions on 4 and 4] that we add are
that the functions hg and kA1 should also satisfy

(60) aoib1; — a1ibo; > 0, and
(61) ao; > 0 for each 1 =6,1,2.

Using the computer algebra system Maple, we can show that there are at
least 4 potential functions ¢1, ..., ¢4 satisfying (60) and (61). Moreover,
the divergences V- DPlyeens V- ¢4 are linearly independent Weil divisors and
span a subgroup of Pic X of rank 3. Any convex combination of ¢, ..., ¢4
also satisfies (60) and (61). So there is a 3-dimensional convex subset
of Pic X ® @) which parametrizes the determinants of a class of possible
risk functions. This set includes V and SV . There is a convex subset of
dimension 4 of the group of -Weil divisors with the same property.

5. Conclusion

We have introduced a toric variety associated to a portfolio and have
shown that the traditional risk functions of Markowitz can be mapped to
direct sums of line bundles on this variety. The variance function maps to a
free vector bundle, the semivariance to a direct sum of possibly independent
line bundles. It is hoped that other useful risk functions can be discovered
by these means. The Picard group parametrizes the line bundles up to
1somorphism and on a toric variety the Picard group is finitely generated.
Therefore the set of all vector bundles that are direct sums of line bundles
1s a free abelian group of finite rank. Perhaps it is possible to use this set
to parametrize a family of new risk functions.
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Equation (54) says that bo; = a1;. Set
i:[ 7% ] a‘ndB'—1:|:ai ﬁi] ‘
Then
boi = (75, 6:) = [ o ] .

Uo,i—1

Writing down all 6 equations, we have the matrix equation

Y1 0 0 0 0 (51 b01
(52 Y2 0 0 0 0 boz
0 43 3 0 0 0 - bo3

(56) 0 0 65 74 0 0 | 7| bog
0 0 0 (55 Y5 0 b05
0 0 0 0 66 Y6 bOG

Let the coefficient matrix of (56) be denoted My. Likewise we have a
matrix equation for 6 equations

ay; = (o, Bi) = [ i ] ;

U1,i—-1
which is
a; 0 0 0 0 By a11
ﬁg (6%} 0 0 0 0 a12
0 B35 a3 0 0 0 - | a13
(57) 0 0 Bs as 0 0 |“P7 | au
0 0 0 B a5 0 a1s
0 0 0 0 B ag a16

Again let the coeflicient matrix of (57) be denoted M. Then equation (54)
becomes

(58) MoUo = Mlul .

So the idea is to find two Weil divisors uo and w; satisfying (58). Using
the computer algebra system Maple, we see that rank My = rank M; = 5.
Let z; be a nonzero vector in ker M;. Then ker zo Nker z; = colspace My N

Z0

colspace M;. Now ker ] has rank 4 and ker My has rank 1 so the set

Z1
of all possible ug satisfying (58) has rank 5. For each such wg there is a line
of possible w; since ker My has rank 1. For each such pair (uo, u1) there is
a potential function ¢ whose gradient satisfies

(59) Ve = hoi + hyj .

Of course ¢ is only unique up to additive constant.

The usual constraints on a portfolio are cg +¢1 = 1, ¢g > 0 and ¢; > 0.
We also want to choose ¢ so that it is concave up, if not everywhere at
least on the cones that overlap with these constraints. So we require that
on o; the quadratic form for ¢ is positive definite for 2 = 6,1,2. In our
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The support function A embeds into the group of Weil divisors by the rule

h(m)
(49) h—

(7o)

The Weil divisors of the i and ; components of the scaled gradient of V
are:

(50) o = (8,—6,—32,-8,6,32)
(51) and ; = (18,7,10,—18, -7, —10) .

Check that these divisors are in the image of the function «, since they
correspond to linear support functions. The Weil divisors of the ¢ and j
components of the scaled gradient of SV are:

(52) s, = (80, —28, —112, 32,8, 80)
(53) and s7; = (16,19, 76, —92, —23,16) .

Check that the images of these divisors are independent in Cl(X).

Because the 2 Weil divisors that arise from the variance function are
linear, they correspond to free line bundles on X. Viewing the gradients
as direct sums of support functions, we see that the variance defines a
free vector bundle on X of rank 2. The 2 components of the gradient
of the semivariance define 2 Weil divisors that are independent in Cl(X).
Therefore we see that the semivariance defines a vector bundle of rank 2 on
X that is a direct sum of 2 nontrivial vector bundles. The determinant of
this direct sum is the element of Pic X that is the product of the 2 direct
summands, hence is nontrivial.

We see that if ¢ is a risk function on (26), (27), that is locally quadratic
on the fan in Figure 1, then the divergence of ¢, V- ¢ 1s a locally linear
function on the fan of Figure 1 hence defines a line bundle in Pic X. So up
to determinants, we ask whether Pic X ® (Q parametrizes a large class of
possible risk functions ¢ on the time series (26), (27). That is, how large a
subset of Pic X ® () consists of vector bundles L that are the determinant
of a locally quadratic risk function? For the present example, we can show
that there is a convex subset of Pic X @ (Q of dimension 3 with this property.

The idea is to find 2 Weil divisors

U_E) = (u01, ey UOG) and u_i = (ull, ey ule)
that define 2 A-linear support functions hg and h; which satisfy

dho _ Ohy
(54) 9, — deo

The support function h; is defined on the cone o; by the equations ho(n;) =
Uugs. S0 if hj|o; = ajsco + bjic1, then h; is defined by the matrix equations

o FIE AL
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problems can be solved if one knows the gradient functions vV , VSV and
any potential functions ¢, 9 such that VV = 645 and VSV = 61& So in
this sense, the important functions are the gradients, not the the risk func-
tions themselves. We emphasize this because the gradients are piecewise
linear forms on the (co, ¢1)-plane. As we are about to see, such functions
define vector bundles on the toric variety associated to the fan shown in
Figure 1.

Because the sequences (24) (25) are integral, the equations (37), (38)
and (39) are defined over the rational numbers Q. Following [7], [3] we call
the regions o; strongly convex rational polyhedral cones. The set A of all
intersections o; N o; is called a fan on R2. Associated to the fan A is a
variety X = T emb(A) defined over the complex numbers C. In general X
will be complete, rational, integral, normal but singular. The singularities
are always rational. In our example, X will be a surface with 6 singular
points. Built into the toric variety are many of the arithmetical properties
of the 3 lines L, L, L3. For example, the 3 lines L1, Lo, L3 define 6 rays
emanating from the origin. On each of these 6 rays is a unique lattice point
(ng, n1) such that ged(no, n1) = 1. In our example, these 6 lattice points are
m= (197 28)7 2 = (_17 5)7 3 = (_237 _8)7 N4 = (_197 _28)7 s = (]—7 _5)7
76 = (23,8). Of course these 6 points completely determine the fan A.
Many of the important invariants of X = T emb(A) can be computed in
terms of these 6 points (see [1], [2]). For example, the Picard group of X
is Pic X = 7*) the class group of Weil divisors is C1 X = Z*@® 7 /123. The
Brauer group of X is B(X) = 7Z/123.

A A-linear support function (or support function, for short) is a real-
valued function defined on R? which is a linear functional upon restriction
to any of the cones o; and which is integer valued on the points 71,.. ., 7s.
The gradients V V and V SV are functions which are linear on each o, but
they are vector-valued, not real-valued and they are rational valued, not
integral, on the 7;. Therefore, they can be scaled to integral vector-values
by the appropriate rational numbers. Check that 162/41 works for VSV
and 27/41 works for VV. Scaling the gradients is within the allowable
framework of minimizing the risk functions. That is, it does not affect
where the risk functions are minimized. The ¢ and ;components of these
scaled gradients are each support functions.

The set of all support functions on A is a free abelian group of rank 6.
A support function is completely determined by its values on the 6 points
71,-..,M6. There is an exact sequence

(47) 0—2>57°—ClX)—0.

The center group in (47) is called the group of Ti-invariant Weil divisors.
The function « has matrix

m
(48) :
YIS
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Lo =
2=0 FiGure 1
The 3 equations
(42) Li=—4/9+23/18¢c1 =0
(43) Ly =14/9¢o— 19/18¢; =0
(44) Lz =—-10/9¢o —2/9¢1 =0

partition the (cq, ¢1)-plane into 6 regions. Label these regions oy, ...

47

y 06

as shown in Figure 1. The function SV is a piecewise quadratic on the

(co, ¢1)-plane which is a quadratic form on each o;.

L§/3 on 03

(L3+L3)/3 on o3

L2/3 on o

(45) SV(co,c1) = (L2 -|—2/L§)/3 on 02
L%/g on o0jy

(L2 +L%)/3 on o6

The gradient of the semivariance function is a piecewise linear transforma-

tion which is linear on each o;.
(46) V SV(co,c1) =

(200/243co + 40/243¢1)i + (40/243¢o + 8/243¢1)]
(592/243¢o — 226/243¢1)i + (—226/243¢o 4 377/486¢1)]
(392/243¢o — 226/243¢1)7 + (—226/243¢o + 361/486¢1)7
(424/243¢co — 358/243¢1)7 + (—358/243¢o + 445/243¢1)7

(32/243co — 92/243¢1)i 4 (—92/243¢o + 529/486¢1)]
(232/243¢o — 52/243¢1)i + (—52/243¢o + 545/486¢1)7

on oq
on oy
on o3
on o4
on oy
on dg

In applications (see [5], [6]) one seeks to minimize one of the risk func-
tions V or SV subject to some constraints such as ¢g + ¢; = 1, and
0 < ¢p,c1 < 1. By the method of Lagrange multipliers, these optimization
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expectation of the portfolio (co,¢1) is E(co,¢1) = copl® + e = 4/9¢o —
13/18¢1. The variance of the portfolio (¢, ¢1) is defined to be

3
(28) V(co, c1) %Z [Cor( ) 4 Clr( ) E(Co,cl)]z
1< ) )
(29) =3 Z [ PO ) 4 ey (r) N(l))]
k=1
Set
1 3 2
(30 A=3> (= 1) = 104/81
k=1
3
(1) B= %Z (A = u©@) (D = ) = —53/81
- 1 3 2
(32) C=3 > (Tz(gl) - u(l)) = 151/162
k=1

Now (28) becomes

(33)
V(co,c1) = At 4 2Bcoer + Cej = 104/81¢ — 106/81cocs + 151/162¢3

That is, V is a quadratic form. The gradient of V is a linear transformation

(34) V V(co, ¢1) = (24co + 2Bcy )i + (2Bco + 2C¢1)]
(35) = (208/81co — 106/81¢1)i + (—106/81co + 151/81¢1)7

For k = 1,2, 3 define

(36) Li(co,c1) = co(ry”) — u@) + ex (rl?) — V)
Then

(37) Ly = —4/9co + 23/18¢1

(38) Ly = 14/9¢co — 19/18¢4

(39) L3 = —10/960—2/961

The semivariance function of the portfolio (cg, 1) is

—_

3
(40) V(co, c1) —Z Ly (co, 1)) e
k=1

w

where

(41) e = { 0 if Lk(Co,Cl) Z 0

1 otherwise
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—~ 0 0
(19) VSv(e) = <8_¢2() SV(o),. Y e SV(E)) , where
(20) 9 V() = Z 2L(2) ( u(”)) er , and where
86,, ’
_J0 L&) >0
(21) = { 1 otherwise

Each partial derivative (18) defines a A-linear support function on RY.
Unfortunately, % V(@) is not integral valued on Z*. However it is rational
valued, so for some scaling factor s which can be chosen to work for all v,
we can view sa‘z V(¢) as an element of M. Because V'V is the direct sum
of N linear functlonals under the map (16) we associate to the variance
function a direct sum of N copies of the trivial line bundle. Similarly, for

some scaling factor ¢, 5~ a SV(E) is integral valued on Z”~. Again under
(16) there is associated to to2 -~ SV(¢) a line bundle L(SV,). Viewing the

gradient VSV as a direct sum of 1ts N partial derivatives, we associate to
the semivariance function a direct sum of N line bundles

(22) L(SVe)&® -+ & L(SVi_1) -

As we see in the next section, the line bundles in this direct sum can be
non-trivial and independent in Pic X.

We could also consider the divergence V-SV function, which is a function
which is locally linear on A. As above, after scaling by ¢, V¢SV =
E,]/V:_Olt% SV(&) is a support function in 8F(A). Because the map to
Pic X in (16) is a group homomorphism, the divergence of SV maps to the
product of the line bundles defined above

(23) L(SVo)® -+ ® L(SVN_1) .
This product is again a line bundle, in fact it is the determinant, or highest

exterior power of (22).

4. An Example

Let us consider a simple example. We take 2 time series of 4 integers
each.

(24) Po=p") =(1,1,3,1)
(25) =) =(1,3,2,3)

Suppose these represent prices of securities. Construct the corresponding
sequences of daily returns.

(26) Ry = (r") = (0,2,-2/3)
(27) Ry = (") =(2,-1/3,1/2)

For (26) and (27) compute the means: pu(® = 4/9, u(* = —13/18. A
portfolio associated to (24) and (25) is a pair of numbers (cg,c¢1). The
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singularities of X are always rational. The N-dimensional algebraic torus
Ty = Spec Clz1, 277, ..., 2N, ZBJ_Vl] acts on Ty emb(A) and the orbits under
the action correspond to the cones ¢ in the fan A.

We deviate slightly from the notation of [7] and denote by Z% the set
of points in R with integral coordinates. A A-linear support function (or
support function, for short) is a real-valued function defined on R¥ which
is a linear functional upon restriction to any of the cones o € A and which
is integer valued on the points in Z~. The set of all support functions on
A make up a free abelian group of finite rank which we denote by SF(A).
The subgroup consisting of all linear support functions is usually denoted
M and is isomorphic to Homy(Z™, Z), hence is free of rank N. We view
elements y in M as N-tuples y = (mog,...,my_1) that act on RY by
inner product. The linear functionals y € M are identified with monomials
e(y) € Clzo, 25", ... en_1, x]_\,l_l] by the map which takes (mo, ..., my_1)

N-1_m
to [[,—o =™

The toric variety X has a canonical covering by open affine sets {U,|o €
A}. The sheaf of regular functions Ox is defined as follows. On U, we
have Ox(U,) is the subring of C[ibo,ibal, . ..,ZBN_l,ZBJ_Vl_l] generated by
{e(y)ly-z >0 for all z € o}.

As shown in [7] there is an exact (split-exact if A is complete, or nearly
s0) sequence of abelian groups

(16) 0> M — 8F(A)—>PicX —0.

Which is defined on elements by taking a support function A to its associ-
ated line bundle £y,. So if A is complete, Pic X is a free abelian group. The
rank of Pic X can be as low as 0 or as large as dimg Cl(X) ® Q =n — N,
where n is the cardinality of the set {o € A|dimo = 1}.

Let us briefly describe the line bundle £ as a locally free sheaf on X
of rank 1. The sheaf L}, is free on each U, and is viewed as a subsheaf of
the constant sheaf V — K, K being the quotient field of X. The support
function A is linear on each cone o € A. Therefore, we can think of h as
a set of elements of M: {y, € M| for each 0,7 € A, ys|r = y-|s}. The
generator for L on U, is e(—y,).

As examples of A-linear support functions, consider the gradients of V

and SV.

(17) 6V(E) = <(‘3£Co V(),... 9 V(E)) , Where

(13) V(@) = oy 2@ () )
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subject to the constraints

N-1 N-1
(14) E(Ej = Z CVN(V) > Eo, 0<¢, <1, Z ¢ =1,
v=0 v=0

where Fg is the investor’s expectation. That is, Fq is a fixed constant,
determined by the investor’s risk tolerance.

One can show that SV(¢) is a continuously differentiable function of
the variables ¢o, ¢1,..., ey—1. By [8, Theorem 9.16] this implies that
SV(&) is continuously differentiable as a function of & It is even locally
quadratic and convex in the control space of the ¢;’s. Examples show that

the function SV(é) is C*, but not C2.

3. The Toric Variety of a Portfolio

To the sequences of integers (1) we will associate an algebraic variety and
to the functions (10) and (12) we associate vector bundles on this variety.
The variety associated to (1) is a toric variety. As a general reference for the
theory of toric varieties, we refer to [7] or [3] and for Algebraic Geometry to
[4]. A toric variety is completely determined by an arrangement of convex
sets in R” called a fan. In our case, the fan will be determined by the linear
equations

(15) L@ =0, (1<k<]),

where Ly, is as in (11). For each k, Ly (¢) = 0 defines a hyperplane through
the origin in R¥.

The equations (15) partition R¥ into convex polyhedral sets. These
convex sets are cones with vertices at the origin, meaning that if they con-
tain a vector Z, they contain the ray emanating from the origin containing
Z. First notice that if [ is sufficiently large and the sequences (1) are suf-
ficiently general, the linear functions (11) will be non-zero and the set of
hyperplanes defined by (15) will be in “general position”. This means that
each cone defined by the hyperplanes will be strongly convex. Roughly this
means that the angle of the vertex of each cone is less than 180 degrees, or
that the cone contains no line through the origin. Because the prices (1)
are assumed to be integers, the equations (15) are defined over the field
of rational numbers (). So the cones cut out by the equations are, in the
common terminology, strongly convex rational polyhedral cones.

The set of all N-dimensional cones o cut out by (15) together with
all lower dimensional faces of these cones make up what is called a fan.
Correctly speaking, a fan A consists of a nonempty collection of strongly
convex rational polyhedral cones satisfying: (a) if o € A, then every face
of o isin A and (b) if 0,7 € A, then o N7 is a common face of o and 7.
The fan defined by (15) is moreover complete since every point of RY is in
some cone of the fan.

Associated to a fan A is a toric variety X = T emb(A). The variety
X is defined over the complex number field C. In general Ty emb(A) is
rational, integral, normal but singular and complete if A is complete. The
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and the semivariance of R, as

1
v 1 v v
(6) V()__lz P _ ()

where

o >0
Tl i e - <o

Let R}, 1%1, . ..,R];_l be sequences of daily returns as in (2). Let ¢ =
(co,€1,.-.,¢N—1) be a vector. In applications, we usually assume there
are some constraints on ¢ such as, for each v, ¢, satisfies 0 < ¢, <1 and
> _01 ¢, = 1. For now, we do consider such constraints. We define a
portfolio to be a formal expression

(7) PF(¢) = {co, €1y --,cN—1)-

For a portfolio PF(¢) there is the associated time series of daily returns

N-1 N-1 N-1
(8) TS(PF(¢)) = TS(¢) = (Z c,,r(lu), ey Z e, Z c,,rl(y)).
v=0 v=0 v=0

We define the ezpectation of the portfolio PF(¢) to be

N-1 N-1

(9) E(c) = Z ¢y (expectation of R;,) = Z c,,u(").

v=0 v=0

The variance of PF(&) is defined to be

(10) V(@) = Z [Z_ ey — @] :

For each k from 1 to [ define the linear function

(11) Lk(E)I]Vz::lCVT,g E(e) = Z ( <u>)

Define the semivariance as in (6)

1
1
(12) = —12_: [Li (D)) e
where

1 otherwise

{ 0 ifLy(@) >0
€ —

The basic philosophy that was inspired by Markowitz in [5] is to minimize
V(&) or SV(&) with respect to the variable & and a given range of expected
returns. Therefore, the problem is

(13) to minimize f(&) = V(&) (or SV())
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The purpose of introducing the algebraic variety is to try to apply the
machinery of Algebraic Geometry to problems arising in the Theory of
Mathematics of Finance. This note answers few if any such questions and
raises more than it answers. The rule which is introduced later that assigns
to a set of securities a toric variety raises many questions. For example, is
there a functor behind it all? If so, on what category is it defined? One
reason for looking at the vector bundles associated to the risk functions is
to see if there is a systematic way of classifying all risk functions on the
initial set of securities. So one could ask whether there are other vector
bundles of rank N on the variety that come from risk functions. If so, do
they provide better measures, or do they provide the investor with efficient
portfolios with increased yields?

Why map the risk functions to direct sums of line bundles on a toric
variety? One sensible reason is that the set of line bundles on a toric
variety is a free abelian group of finite rank. One could try to consider
the set of all risk functions. This would be an overwhelmingly large set
of functions. By mapping the risk functions into a smaller group, there is
hope that new information can be obtained due to the sparsity of trees in
the forest.

2. The Risk Functions and Portfolio Selection Methods

Given are sequences of daily prices on N securities

(1) PI/ = (p(()y)ap(ly)a"'vp(y) 5:217" 7p;’/))

where 0 < v < N—1. For our purposes it will be useful to assume the prices
are positive integers. From (1) we construct the corresponding sequences
of daily returns

(2) By = (v ) e W) e
where 0 < v < N — 1 and 7"5:21 is defined by
() (v)
(3) (1/) _ Ppy1 = Pn
n-I—l (v) .
p

For each v (0 < v < N — 1) we define the sample mean r(¥) of R;, as usual
_ 1 !
(4) r) = ) = 7 kz_:lr;(:).

(Note p¥) is also called the expected value of R, .) We define the sample
variance of R, as

1
v v 1 v v
(5) (o ))2:\/()__12 p) )2

k=1
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Abstract

In the portfolio selection theory of H. Markowitz one is led to consider
the variance function defined on a set of time series. Also one may consider
the semivariance function. We define for each such set of time series a
toric variety and show that the risk functions mentioned by Markowitz
correspond to vector bundles on the variety. The variance corresponds to
a free bundle and semivariance to a direct sum of non-free line bundles.

1. Introduction

If one has a certain amount of assets and wants to allocate them among
N securities, the philosophy of Markowitz is to diversify efficiently. The
idea is to pick the portfolio which minimizes the investor’s risk. The mea-
sure of risk is an important factor to consider. In this note we consider 2 of
Markowitz’s risk functions: the variance and semivariance functions. The
philosophy behind using the variance function as a risk function is that one
should minimize the deviation from the mean. The semivariance method
says that positive deviation from the mean is okay, but negative deviation
should be minimized.

We associate to a set of prices of N securities a toric variety and to the
risk functions vector bundles of rank N (i.e. locally free sheaves of rank
N) on this variety. The variance function corresponds to the free vector
bundle of rank N, and the semivariance function to a direct sum of N line
bundles (i.e. invertible modules, or rank-1 vector bundles).
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