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Introduction’

We give an example of a surface defined over a field of characteristic
2 with the following properties:

(i) F is an affine surface with equation of the form F' : z? = f(z,y)
in affine 3-space.

(ii) The closure of F in projective space, denoted F', has a nonsingular
mode F with B B

pe(F) =0 but Po(F) > 1,

so that F'is nonrational. The example answers in characteristic 2 a question
of Professor Zariski which he suggested to P. Blass in 1971. (See (3.0.0)).

Our construction in characteristic 2 follows closely the classical con-
struction of Enriques surfaces as double planes. However, everything had
to be done anew in characteristic 2 in order to verify that the classical
computations will still go through.

Part 1 1s new. On the other hand, our resolution of the singularity at
infinity very closely parallels that given in Safarevi¢’s seminar on surfaces

TFor Part I of Zariski Surfaces see [0].
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[4] (pp. 148-165 in the English translation [3]). We acknowledge with
pleasure the help of J. S. Milne and M. Hochster in working out the details
of this example. Conversation and advice of Professor’s Zariski, Mumford,
Beauville, Hironka, Bloch and Abhyankar are also gratefully acknowledged.

3.0.0. Zariski’s Question (1971). Suppose F is defined by 2 = f(z,y)
over an algebraically closed field of characteristic p > 0. Let F be a non-
singular projective model of k(F). Is it true that p,(F) = 0 implies F
rational??

3.0.1. Remark (1993) The question is open for p > 3. Also it would
be interesting to find an example of a hypersurface F : 2P = f(x,y) such
that the corresponding Zariski surface I has Pz(ﬁ) > 0 and pg(f) =0,
where the degree of the defining equation of F' is p 4+ 1 and there are no
singularities at infinity.

Part 1. Equation of the surface, singularities in characteristic 2

In this part of section 3 we shall state the equation of the affine
surface F' and later of its closure in projective space F. All the non-rational
singularities of F' will be determined. This will be done for a ‘general
choice’of coefficients entering in the equation of F. It turns out that F has
only 4 non-rational singularities.

The equation is F' : 2?2 = RQ over an algebraically closed field k of
characteristic 2. Here

R(z,y) = zy(z? + y* + pry + 1)
and
Q(x,y) = Ar*+ Ay + Bry® + B yx® + C(xy) 4oy’ +ye + Ax? + A'y* + Dy
The curve @ = 0 is tangent to the conic at (1,0) and (0,1), and it has a
node at (0,0).
We now prove the following:
Proposition 3.0.1 For a general choice of coefficients p, A, A’, B, B',

C, D, the affine surface F' has only 3 non-rational singularities: (0,0,0);
(0,1,0), (0,0,1).

Proof. Here we demonstrate that F' has no other non-rational singularities.
Later (see (3.3.1), (3.5.2), (3.5.3)) it will be shown that these three points
are indeed non-rational singularities.

It is easy to show that if (x,y,z) is a non-rational singularity of F’

then
I(RQ)

(£Q). = Oz

=0; (1)

?B. Lang provides a counter-example to (3.0.0) in ([1], [2]) when the characteristic
is 3.
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(nQ), = 22 = )
(hQy = Z5D =, ®)

(See (3A.3.0) in the appendix to this section.)
These are equivalent to

(1) R.Q+ Q,R = 0;
(2) R,Q+ Q,R=0;
(3)' Rey@+ QuyR+ R.Qy + Qo Ry = 0.
Let A = det g: g: = R, Qy+ Q- Ry. We will show that A =0 at

a point satisfying (1), (2)’, (3)'. If A were not 0 at such a point, then (1)’
and (2)" imply R = @ = 0; but then (3)7 implies A = 0; a contradiction.
Thus

A =0 as a consequence of (1), (2)’,(3)". (4)

To evaluate A observe that

Ry=2®y+ ¢’ +y=y(@ + vy’ + D =yle +y+1)? (5)
Ry=z(z*+y*+1)=2(x+y+1)7 (6)
« = By’ + B'yz® +y* + Dy = y(By’ + B'a> + y+ D), (7)
Qy = B'2® + Bey’ + 2 + De = x(B'2* + By’ + x + D), (8)

so that
Quy = By* + Biz? + D, (9)

and therefore

A=(r+y+1)°(yQy +2Qa)
=(z+y+ 1) xy)(By* + B'a> +y+ D+ B2+ By’ +x + D)
= (z +y+1)*(zy)(z +v)

Thus if a singularity satisfies (1), (2), (3)’ there are four possible
cases:

(a)e=0,b)y=0,(c)x4+y=0,(d) e +y+1=0.
Case (a) Since x =0, R = @, = 0, so that (1)’ and (2)’ reduce to R.Q =
RyQ=0.1If @ =0, then z = 0 implies

A/y4+A/ 2 :A/(y2+y)2 :0’
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so that if we assume A’ # 0, then y = 0 or y = 1, and we obtain only
(0,0,0) or (0,1,0). If @ # 0, then R = R, = Ry, = 0 and again we get only
(0,0,0) or (0,1,0).
Case (b) Since F' is symmetric in ¢ and y, if we assume A # 0, then from
case (a) we obtain only (0,0,0) or (1,0,0).
Case (c) Here z = y. Then from (5)-(9) we have Ry = 2, Ry = ¢,Qs =
z[(B+ BYz> + 2+ D] = Qy, Ry = 1 and Quy = (B + B')x* + D. Also,
@ and R become Q = (A+ A+ B+ B + C)z* + (A+ A’ + D)z? and
R=2*px?+1).

From this it follows that

ReQ+ Q:R=a[(A+ A + B+ B+ C)a* + (A+ A + D)z’]
+[(B+ B2 +x+ D)e*(pe?+1)=0

and

ReyQ+ QuyR=(A+ A+ B+ B +C)a* + (A+ A 4+ D)a”
+ (B + B)z? + D]z*(pz* + 1) = 0.

If « = 0, then y = 0, so there is no new solution. If x # 0, divide

R.Q+ Q. R by 3 to get

(A+ A +B+B +C)e+(A+ A +D)+[(B+B)2* +z+ D)(pz* +1) = 0
and divide Ryy + Quy R by 2% to get

(A+ A +B+B' +C)a”+(A+ A + D)+ [(B+ B')z* + D](pz* + 1) = 0.

Subtract these two equations to obtain z(pz? + 1) = 0 and hence pz? = 1
and (A+A'+B+B' +C)z?+(A+A'+ D) = 0. Thus (A+A'+B+B'+C) =
p(A + A" + D). This last equality will not hold for a general choice of
coefficients, so that for such a general choice the only solution of (1), (2)/,
(3 withe=yise=y=2=0.
Case (d) Herey = ¢+1. Ry = Ryy = A =0, so that (1)’ and (3)" become
QR =0 and Qy R =0, respectively.
If R =0, then pz*(z + 1)? = 0. If we assume P # 0, then x = 0 or z = 1.
z =0 gives (0,1,0) and « = 1 gives (1,0,0).

If R # 0, then Q, = Q,y = 0; which by (7) and (8) yields y*> = 0 and
hence y = 0. But y = 0 implies # = 1 and we only obtain the point (1,0,0).

To determine the singularities at infinity, homogenize the equation of

F:

n 6 2

F oz = J:y(xz +y? 4 pay + zg)Q(x, Y, 20)
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where

Q(z,y, 20) = Ax* + A'y' + Bay® + B'ya® + C(wy)”
+ zo(xy® + yo?) + 25 (Ax? + A'y* + Day).

Let Fg(x,y, 20) denote the right-hand side of the equation of F' which
is a homogeneous form of degree 8. Also,

Zgzz = fS(xa y) + ZOF7(xa Y, ZO)
where
fa(z,y) = zy(a® + y* + pay)(Ax’ + A'y* + Bay® + B'zy + C(ay)?)

and F7 is a homogeneous form of degree 7.
A singularity at infinity has the form (z,y, z,0) and it must satisfy

0 0 OF;
a—f($ay) = a—‘fyé(xay) = 6—5(%3/, ZO) = fS(xay) =0

For a general choice of p, A, A’, B, B’ and C, fs has distinct linear factors;
thus fs = (fs)e = (fs)y = 0 forces z = y = 0; so we obtain exactly one
singular point at infinity with # = y = zy and z = 1. The local equation is

FO : Zg = fs(l‘,y) +ZOF7(xaya ZO) = FS(xaya ZO)

Remark 3.0.2. For a general choice of coefficients, Sing(F') consists of a
finite number of isolated singularities.

Proof. There is only one singular point on F' — F. By (3.0.1) F' has only
three singularities satisfying (1), (2) and (3). All of the other singularities
are isolated by (3A.3.0). Thus all singularities of F' are isolated. Since
Sing(F) is closed in the Zariski topology of F, Sing(F) is finite.

Remark 3.0.3. For a general choice of coefficients, F' is a normal surface.
This follows from (3.0.2) since a projective hypersurface of dimension 2
with isolated singularities is normal.

Part 2

In this part the singularities of F' are resolved, and adjoints and bi-
adjoints are determined locally at each of the three non-rational singular
points (Corollaries (3.3.1), (3.3.2), (3.5.1), (3.5.2), (3.5.3), (3.5.4), (3.5.5),
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Lemma 3.1.0. Suppose that k is an algebraically closed field of character-
wstic 2 and

w? = fa(u,v) + f5(u,v) + -+ fulu,v), (1)

with n > b5 is an equation where fi(u,v) € k[u,v] is homogeneous of degree
t, 4 < i < n. Suppose that the singularity at the point u = v = w = 0
15 1solated. Suppose also that the following condition, referred to later as

(3.1.1) s satisfied:
(3.1.1) Neither the system %ﬁ(u, 1)=fs(u, 1)=0 nor the system %ﬁ(l, v)
u v
= f5(1,v) = 0 has a solution.

Then (a) equation (1) defines an irreducible hypersurface

klu, v, w]

S:Spec(w2—f4—f5—~~—fn)

= Spec k[S]

and

(b) the singularity at (0,0,0) is resolved by a quadratic transformation
ollowed by blowing up a double line which is the exceptional locus.
followed by blow: double li hich is th jonal

Proof of (a). To show that S is irreducible, it is enough to see that the
right hand side of (1) is not a square since f5 # 0.

Proof of (b). First we perform a quadratic transformation. We blow up
the ideal (u,v,w). Since w is integrally dependent on (u,v), therefore by
(3A.2.0) the following two affine schemes cover )5, the blown up variety:

SpecR’ = Spec k [u, E’ E] = Spec kfu', v, w']
u u
and
Spec R"” = Spec [E, v, ﬂ] = Spec k[u” v, w"].
v

These schemes can be identified with hypersurfaces having equations

(w)? = (W) fa(L,0) + -+ (W) 7 a(1,0), (2)
(w//)2f4(u”,1)—|—~~~—|—(v”)”_2fn(u”,1), (3)

respectively. The glueing together is by the isomorphism of open sets
v

(SpecR')(yry = (SpecR” )iy that is given by R/ [E] =R [—
v u

Next we blow up the ‘double line’, i.e., the coherent sheaf of ideals
given by (w',v') = (w/u, u) on Spec R and (w”,v") = (w/v,v) on Spec R".
Since, in the ring of intersection kfu,v/u, w/u,u/v], (w/u,u) = (w/v,v),
therefore the sheaf of ideals is well defined on @S. Blowing it up gives a
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scheme covered by two affines since w’ is integrally dependent on the ideal
(u') and w” on the ideal (v").

The new scheme S is thus covered by the spectra of the following two
rings:

and
1
Ry =k [U”,U”, Z}—] =k [E,U, ﬂ] = kfuz, v, wa)].

Again, by (3A.2.0), Ry and Rj are coordinate rings of the following hyper-
surfaces:

Siiwi = fa(l,v0) 4+ un fs(Lvn) + 4wl fu (1, 01) (a)
S i w = fa(us, 1)+ vafs(us, 1)+ -+ 05~ fu(us, 1). (b)

1
The glueing together is given by Spec(R;) N Spec(R2) = Spec Ry [—]

v1
1
Spec Rs [—] = Spec(compositum RjRain k(S)). We note that k(S) =
Uz

k(u, v, w). S has a natural projection down to S. Call it
TS5 =S

That projection restricted to Spec Ry = Si and Spec Rs = S, corresponds
to the natural inclusions

k[U,U,w]%Rlzk[U, ] = kfuy, vy, wi]

bl

bl

2 lea|e
Cl\’|S:m|g

k[u,v,w] <— Ry = k [v, ] = k[ug, vo, wo].

To find the fibre over the point (0,0,0) on S we observe that in R; the ideal
(u,v,w) is equal to (u) = (u1); and in R2 (u, v, w) is equal to (v) = (v2).
Thus the exceptional fibre is the curve u; = 0 on Sy glued together with the
curve v2 = 0 on S». Equations (a) and (b) together with condition (3.1.1)
and the Jacobian criterion suffice to show that all points of the exceptional
fibre on S are simple for S. Hence the singularity is resolved by

T:85— 5. O
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Lemma 3.2.0 Let S: w? = fa(u,v) + fs(u,v) + -+ fa(u,v) = f(u,v) be
as in (3.1.0), satisfying (3.1.1). In addition, we assume condition (3.2.1),
namely, that f4(1,u) and fa(v,1) are not perfect squares (characteristic 2).

Then a monomial u®v*w® is adjoint at the isolated singular point
u=v=w=0 if and only if a + b+ 2¢ > 1, and it is biadjoint if and only
fa+b+2c>2.

Proof. We continue with the notations of (3.1.0): S . S is the resolution,

S 1s covered by Si and §2, the two affine hypersurfaces with equations
Spiw? = fa(Lo) 4w fs(Lo) + -+ ud (1, 01) = g1(up, v1)

and

Syt wi = fa(uz, 1)+ vafs(uz, 1) + -+ 05" * fo(us, 1) = ga(ua, va).

Denote the restriction of 7 to §Z by m;. w1, o are dual to the ring inclusions
71, 75 given by

*

k[u,v,w]&k [u, v

v

Eaﬁ] :k[ulavlawl]a
5 U w

k[uavaw] ;2) k [;ava U_2:| = k[UZaUZawZ]'

To determine adjoints we compute the pullback of the canonical generating
differential o, to S7 and Ss.

_dudw  dvdw
Os =~ = —aF
v du

Since 75 (u) = uy, 75 (v) = uyvy, 75 (w) = wiwy, and 75 (u) = uzva, 75(v) =
va, w5 (w) = viws, we have

2 duyd 2dvad
() = o P g o) = ezt
%(Ulaulvl) %(Uzuz,vz)

1 1
But g1(u1,v1) = Ff(ul’ uivy) and ga(us, ve) = v—4f(uzvz, va), thus by the
1 2

chain rule
O _ 1 (0F (uy, urvy) - u _ L (of (uy, uivy)
oy wt \ v 1, U101 1—u:1)) 90 1, U1v1).
1 1
Similarly g—zz(uz,vz) = Eg_{; (g, usv9).  Therefore 71'1_1(05) = w
duid 1
6gU17w1 = — oy and o) = — oy where 0y, 05 are canonical
(2 1 v 2 1 2
a—l(ulavl) ! 2
v1

generating differentials on §1, Sy regular along the exceptional fibre.



66 Joseph Blass, Piotr Blass and Jeff Lang

The exceptional fibre of the map 7 : S — Sis glued together from
the curve u; =0 on §1 and vo = 0 on §2.

These curves on §1 and §2 define discrete valuations p; of k(§1) and
pa2 of k(§2) such that for all nonnegative integers o, 3,7

psiul)=a  and  pa(ugefud) = 4.

(Here we need condition (3.2.1). See (3A.1.0) in the appendix.) Under
the canonical identification of k(§1) = k(§2) =k(S) = k(u,v,w), p1 = pa.
(The valuation measures the order of pole or zero along the exceptional
fibre.) We write p = p1 = pa.

Since p(agl) = p(0§2) =0 (see [0], (2.34.0)), we obtain p(7]'(c,)) =
p(r5(05)) = —1. Thus a monomial uvw® is adjoint at (0,0,0) if and only
if it pulls back on §1 and §2 to a function of value> 1. Since wfl(uavbwc) =
wiTP 2oyt and 73 (u 0P w®) = v§T 2y we see that u®vPw® is adjoint
if and only if @ + b + 2¢ > 1. Similarly by considering the pullback of w®?
we conclude that u®v’w® is biadjoint if and only if @ + b + 2¢ > 2 (see
(3A.1.1)). O

Corollary 3.2.1 p(u,v,w) € k[u,v,w] = k[S] is adjoint at (0,0,0) if and
only if p(0,0,0) = 0.

Corollary 3.2.2 p(u,v,w) is biadjoint if and only if p is a linear combina-
tion of monomials u®vtw® satisfying a + b+ 2¢ > 2.

Proof. We need only prove the ‘only if’ part. The only monomials not
satisfying a 4+ b 4+ 2¢ > 2 are u, v and nonzero elements of k. Therefore we
can write p(u, v, w) = p1(u, v, w) + c1u + eav + ¢ where p; is biadjoint and
c1,C2,C3 € k.

It is enough to show that p biadjoint implies ¢; = ¢o = ¢3 = 0. If
p is biadjoint, then p is adjoint, so ¢g = 0 by (3.2.1). Thus cju + cov is
biadjoint. Since the pullback wl_l(clu +eav) = ui(cq +cav1), we must have
p(ui(er+cav1)) > 2; which implies p(¢q 4+ cavy) > 1. But if (¢q, ¢2) # (0,0),
then by lemma (3A.1.0), part (iii), p(e1 4+ cav1) = 0. Therefore ¢; = ¢3 = 0.
(I

Proposition 3.3.0 Take the equation of I,

22 = zy(a® + y° +pry+ 1)Q,

where @ = Az* + A'y* + Bary® + B'yx® + C(zy)? + 2y® + y2? + Az? +
A'y? + Dzy. Then for a general choice of coefficients the origin (0,0,0) is
an isolated singularity that satisfies conditions (3.1.1) and (3.2.1).

Proof. By (3.0.2) we may assume that (0,0,0) is an isolated singularity.
We have 2% = zy(Az? + A'y? + Dry) + zy(ry? + ya?) + higher order terms.
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We use the notations of lemma (3.1.0) with u = #,v = y,w = z. Then

fa(z, 1) = 2(Ax? + A’ + Dx),
f5(x, 1) = 2% (x + 1),

aai;(x, 1)= Az? + A’
N A 6f4
If (A+ A)A" # 0, then f5(x,1) and 6—(1‘,1) have no common roots.
T
Similarly, if (A + A)A # 0 then f5(1,y) and %ﬁ(l, y) have no common
Y

roots. If AA" # 0, fa(x, 1) and f4(1,y) are not perfect squares. Therefore,
for the general choice of coefficients (A+ A’)AA’ # 0 conditions (3.1.1) and
(3.2.1) are satisfied. O We restate (3.2.1) in terms of adjoint surfaces (see
(2.16.1) for the definition of an adjoint surface).

Corollary 3.3.1 Adjoint surfaces to our surface F pass through the sin-
gular point (0,0,0). Conversely any surface that passes through (0,0,0) is
adjoint.

Corollary 3.3.2 zy is biadjoint at (0,0,0).
Proof. Follows from (3.2.2) and (3.3.0). O

Proposition 3.4.0 The singularity of F' at (0,1,0) is resolved as follows.
After a single quadratic transform one obtains in the exceptional locus only

one isolated singular point. It is a quadruple point satisfying (3.1.1) and
(3.2.1).

This is true for a general choice of parameters in the equation of F'.
The same fact is true for the singularity of " at (1,0,0).
Proof. The last statement follows by symmetry of the equation of F' in
terms of # and y and by interchanging » and y, A and A’, B and B/,
etc. in the below proof. For a general choice of coefficients (0,1,0) is an
isolated singularity. To get the local equation of F' replace y by y + 1 to
get 22 = x(y+ 1) (2 + y? + pry + px)Q where

Q=Q(z,y) +x(B+D+1)+2*(C+1)+ Bz>+ Bae(y* +9).

Blow up the ideal (x, g, z) to obtain a new variety QF. Since z is integrally
dependent on (z,y), @F is (by (3A.2.0)) covered by two affines Fy, Ea. The
first affine chart £y is given by (see (3A.2.0)) Ey = Spec Ry where

r x
FEy 18 then a hypersurface with equation

Z/Z Il‘/(gll‘/—i-1)(l‘/+§/21‘/+pl‘/§/—|—p)(3—|—D—|—1)+l‘/é(l‘/,y/),
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where @(x’, y') is some polynomial. Along the exceptional fibre given by
¥ = 0,0/0x" is easily computed and equals p(B + D + 1). This is # 0 if
we assume p # 0 and B+ D 4+ 1 # 0. And under these assumptions there
are no singularities along the exceptional locus in this chart.

The second affine chart Fs is given, again by (3A.2.0), by E2 = Spec
Ry where

Ra= k|22 ] =)
) )
Again F5 is a hypersurface, which is given by

E2 . Z "2 __ xny//(y//_i_ 1)(1‘”23//-1-3/ —|—px”y”—|—px )[(B—|—D—|— 1)1‘//
+ /y//+ (B+D)$//y//+y//Q//($//,g//)],

where Q" (2", y") contains only monomials of degree two or higher.

Along the exceptional locus g/ = 0 and therefore 9/9y" is given by
2'pr”(X + D+ 1)2”. Thus if we assume p(B+ D + 1) # 0,2" =y’ =
2" = 0 is the only singular point. For a generic choice of coefficients, the
singular point will be isolated since the original singularity is isolated. It is
quadruple, so it is only left to check conditions (3.1.1) and (3.2.1). Hereafter
we shall drop the primes and bars.

We have 22 = fa(x,y)+ fs(x,y) + higher order terms, where fa(z,y)
= zy(pz + y)(Br + A'y) with 3 = B+ D+ 1. Also fs(z,y) = zy*[(pr +
Y)(Pr + A'y) + pe(Bz + A'y) + (pr + y)(B + D)x]. Consequently,

fa(z, 1) = z(px + 1)(Bx + A')

and
fa(Ly) = y(p+ v)(B + A'y).

The partial derivatives give

L =ag e &
and
aai; (x,1) = pBa® + A’ (2)
Also
f5(Ly) =y [(p+y)(ﬁ+A’ ) +p(B+ A'y) + (B + D)(p+y)]
y =y’ [A'y’ + (pA' + B+ pAI+ B+ D)y + p(B + D))
=y [AY + (B + B+ 1)y +p(B+ D)
=y’ [A’y2+y+p B+1)]

Similarly fs(z,1) simplifies to

(2) f5(e, 1) = w(a*p(B+ 1)+ + A)).
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We have to show that for a general choice of parameters, (1), (1)’ have no
common root, and the same for (2) and (2)’.

If %(1, y) = fs(1,y) = 0, then y?(y + p) = 0; which implies pf = 0
y

or A’p = 3, but this is not true for a general choice of coefficients.
If %ﬁ(l‘, 1) = fs(x,1) = 0, then z?(xp+1) = 0; which implies A’ =
T
or # = A’p, and again this is not the case for a general choice of parameters.
To check condition (3.2.1) observe that in the above notation f4(1,y)
=yly + p)(f + A'y) is not a perfect square if A’ # 0 in characteristic 2.
Also fa(z,1) = z(pr + 1)(fx + A’) is not a square if p8 # 0. O

Proposition 3.5.0 Let y = y+ 1 and let F' be our surface. A monomial
29" 2¢ is adjoint at (0,1,0) if and only if b+ 2a + 3¢ > 1 and biadjoint if
and only if b+ 2a + 3¢ > 2.

Proof. From the resolution (3.4.0) we know that if we write F' in terms of
x and y, then we have

F 2% = fa(2,9) + falz, ) + -+ fs(z,9) = f(z, ).

Also if we blow up (2, ¥, z) we obtain QF covered by two affine hypersur-
faces:

E1 = Spec k [a:, g, i] = Spec klz, ¥, 2]
r
where )
Ey: = o f(@ ya) = g1(2' ¥)
and
_ Loz "o
Ey = Spec k [—,y, —] = Spec k[2",y", 2"]
Y Y

with equation
1
E2 . Z//Z — gl_/zf(x//g//’ g//) — gz(x//’ g//).

FE4 is non-singular along the exceptional fibre and E5 has only one singular
point #” = y” = 2” = 0 on the exceptonal fibre. That singular point is an
isolated singularity of Fy satisfying (3.1.1) and (3.2.1).

By (3.2.0) a function

adjoint if and only if « 4+ 5+ 2y > 1,

x”“gj”ﬁz’” is { . o . .
biadjoint if and only if « 4+ 3 4 2y > 2.

We first compute the pullback of the canonical generating differential on F
to F1. The projection of £y to F is given by

= Qi _ ot
k[l‘,y,Z]%k[l‘,x,x]—k[l‘,y,Z]
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so that * — 2,y — ¥/'2’', z — 2'z’. We write

_dx dz
e
dy
The pullback to £y 1s
x'de’dz’

%(x/’g/)_ 1 (g_f) (x/’g/x/).
Y )

T
Therefore the pullback of op to F is

dx'dz’

which is a canonical generating differential on Ep,0p,, regular along the
exceptional fibre which is nonsingular.
Similarly op pulls back to

dg// dZ//

(%)

the generating differential op, on Fa.

Because of the above computations and since FE; is already non-
singular it is clear that a function p(z, ¥, z) € k[z, 9, z] is adjoint at (0,0,0)
if and only if its pullback to E5 is locally adjoint at #” = ¢’ = 2/ = 0.

Taking a monomial z%y°2¢ its pullback is 2" (y")4+0+¢2"¢. This is
adjoint by (3.2.0) if and only if & + 2a + 3¢ > 1 and is biadjoint if and only
ifb+2a+3c>2.0

Corollary 3.5.1 Let p € k[F] = klz,y, 2], let y = y+ 1 and write p =
p(x,y,z); then p(x,y,z) is adjoint at ¢ = y = z = 0 if and only if
p(0,0,0) = 0.

Corollary 3.5.2 Adjoint surfaces to our surface F' pass through (1,0,0).
Conversely, any surface passing through (1,0,0) is adjoint to F at that
point.

Corollary 3.5.3 Adjoint surfaces pass through (0,1,0} and any surface
passing through (0,1,0) is adjoint to F' at that point.

Proof. Symmetry in z,y. O
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Corollary 3.5.4 Using notations of (3.5.1), p(x,y,z) € k[z,y,z] is biad-
joint at (0,1,0) if and only if p is a linear combinatin of monomials zy°~°

satisfying 2a + b+ 3¢ > 2.

Proof. The only monomials not satisfying the above are the nonzero con-
stants and y. It is enough to show that ¢; 4+ ¢2y 1s biadjoint if and only if
1 = ¢ = 0. By (3.5.1) ¢1 = 0 since a biadjoint is adjoint. Pulling back
eoy to Ea, cay is biadjoint at 2" = ¢/ = 2" = 0, but this contradicts (3.2.0)
unless ¢o = 0. O

Corollary 3.5.5 zy = zy + z is biadjoint at (0,1,0).
Corollary 3.5.6 zy is biadjoint at (1,0,0).

Proof. By symmetry

Remark 3.5.7. (3.3.1), (3.3.2) and (3.5.1)-(3.5.6) are true for a general
choice of the coefficients of F'.
(To be continued in the next issue.)
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