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Zariski Surfaces, Part II 59[4] (pp. 148-165 in the English translation [3]). We acknowledge withpleasure the help of J. S. Milne and M. Hochster in working out the detailsof this example. Conversation and advice of Professor's Zariski, Mumford,Beauville, Hironka, Bloch and Abhyankar are also gratefully acknowledged.3.0.0. Zariski's Question (1971). Suppose F is de�ned by zp = f(x; y)over an algebraically closed �eld of characteristic p > 0. Let eF be a non-singular projective model of k(F ). Is it true that pg( eF ) = 0 implies Frational?23.0.1. Remark (1993) The question is open for p > 3. Also it wouldbe interesting to �nd an example of a hypersurface F : zp = f(x; y) suchthat the corresponding Zariski surface eF has P2( eF ) > 0 and pg( eF ) = 0,where the degree of the de�ning equation of F is p + 1 and there are nosingularities at in�nity.Part 1. Equation of the surface, singularities in characteristic 2In this part of section 3 we shall state the equation of the a�nesurface F and later of its closure in projective space �F . All the non-rationalsingularities of �F will be determined. This will be done for a `generalchoice'of coe�cients entering in the equation of F . It turns out that �F hasonly 4 non-rational singularities.The equation is F : z2 = RQ over an algebraically closed �eld k ofcharacteristic 2. HereR(x; y) = xy(x2 + y2 + pxy + 1)andQ(x; y) = Ax4+A0y4+Bxy3+B0yx3+C(xy)2+xy2+yx2+Ax2+A0y2+DxyThe curve Q = 0 is tangent to the conic at (1,0) and (0,1), and it has anode at (0,0).We now prove the following:Proposition 3.0.1 For a general choice of coe�cients p, A, A0, B, B0,C, D, the a�ne surface F has only 3 non-rational singularities: (0; 0; 0);(0; 1; 0); (0; 0; 1).Proof. Here we demonstrate that F has no other non-rational singularities.Later (see (3.3.1), (3.5.2), (3.5.3)) it will be shown that these three pointsare indeed non-rational singularities.It is easy to show that if (x; y; z) is a non-rational singularity of Fthen (RQ)x = @(RQ)@x = 0; (1)2B. Lang provides a counter-example to (3.0.0) in ([1], [2]) when the characteristicis 3.



60 Joseph Blass, Piotr Blass and Je� Lang(RQ)y = @(RQ)@y = 0; (2)(RQ)xy = @2(RQ)@x@y = 0; (3)(See (3A.3.0) in the appendix to this section.)These are equivalent to(1)0 RxQ+ QxR = 0;(2)0 RyQ+ QyR = 0;(3)0 RxyQ+ QxyR+ RxQy + QxRy = 0:Let � = det ����Rx QxRy Qy ���� = RxQy+QxRy. We will show that � = 0 ata point satisfying (1)0, (2)0, (3)0. If � were not 0 at such a point, then (1)0and (2)0 imply R = Q = 0; but then (3)0 implies � = 0; a contradiction.Thus � = 0 as a consequence of (1)0; (2)0; (3)0: (4)To evaluate � observe thatRx = x2y + y3 + y = y(x2 + y2 + 1) = y(x + y + 1)2; (5)Ry = x(x2 + y2 + 1) = x(x+ y + 1)2; (6)Qx = By3 +B0yx2 + y2 +Dy = y(By2 + B0x2 + y +D); (7)Qy = B0x3 + Bxy2 + x2 +Dx = x(B0x2 + By2 + x+D); (8)so that Qxy = By2 + B0x2 +D; (9)and therefore� = (x + y + 1)2(yQy + xQx)= (x + y + 1)2(xy)(By2 + B0x2 + y +D + B0x2 +By2 + x+D)= (x + y + 1)2(xy)(x + y)Thus if a singularity satis�es (1)0, (2)0, (3)0 there are four possiblecases:(a) x = 0, (b) y = 0, (c) x+ y = 0, (d) x+ y + 1 = 0.Case (a) Since x = 0; R = Qy = 0, so that (1)0 and (2)0 reduce to RxQ =RyQ = 0. If Q = 0, then x = 0 impliesA0y4 + A0y2 = A0(y2 + y)2 = 0;



Zariski Surfaces, Part II 61so that if we assume A0 6= 0, then y = 0 or y = 1, and we obtain only(0; 0; 0) or (0; 1; 0). If Q 6= 0, then R = Rx = Ry = 0 and again we get only(0; 0; 0) or (0; 1; 0).Case (b) Since F is symmetric in x and y, if we assume A 6= 0, then fromcase (a) we obtain only (0,0,0) or (1,0,0).Case (c) Here x = y. Then from (5)-(9) we have Rx = x;Ry = x;Qx =x[(B + B0)x2 + x +D] = Qy; Rxy = 1 and Qxy = (B + B0)x2 + D: Also,Q and R become Q = (A + A0 + B + B0 + C)x4 + (A + A0 + D)x2 andR = x2(px2 + 1).From this it follows thatRxQ+ QxR = x[(A+A0 + B + B0 + C)x4 + (A+ A0 +D)x2]+ [(B +B0)x2 + x+D]x3(px2 + 1) = 0and RxyQ+QxyR = (A +A0 + B + B0 + C)x4 + (A+ A0 +D)x2+ [(B +B0)x2 +D]x2(px2 + 1) = 0:If x = 0, then y = 0, so there is no new solution. If x 6= 0, divideRxQ+QxR by x3 to get(A+A0 +B+B0+C)x+(A+A0 +D)+ [(B +B0)x2+x+D](px2+1) = 0and divide Rxy +QxyR by x2 to get(A+A0 +B +B0 +C)x2+ (A+A0 +D) + [(B +B0)x2 +D](px2+ 1) = 0:Subtract these two equations to obtain x(px2 + 1) = 0 and hence px2 = 1and (A+A0+B+B0+C)x2+(A+A0+D) = 0. Thus (A+A0+B+B0+C) =p(A + A0 + D). This last equality will not hold for a general choice ofcoe�cients, so that for such a general choice the only solution of (1)0, (2)0,(3)0 with x = y is x = y = z = 0.Case (d) Here y = x+1. Rx = Rxy = � = 0, so that (1)0 and (3)0 becomeQxR = 0 and QxyR = 0, respectively.If R = 0, then px2(x+ 1)2 = 0. If we assume P 6= 0, then x = 0 or x = 1.x = 0 gives (0,1,0) and x = 1 gives (1,0,0).If R 6= 0, then Qx = Qxy = 0; which by (7) and (8) yields y2 = 0 andhence y = 0. But y = 0 implies x = 1 and we only obtain the point (1,0,0).To determine the singularities at in�nity, homogenize the equation ofF : �F : z60z2 = xy(x2 + y2 + pxy + z20)Q(x; y; z0)



62 Joseph Blass, Piotr Blass and Je� Langwhere Q(x; y; z0) = Ax4 +A0y4 +Bxy3 + B0yx3 + C(xy)2+ z0(xy2 + yx2) + z20(Ax2 + A0y2 +Dxy):Let F8(x; y; z0) denote the right-hand side of the equation of �F whichis a homogeneous form of degree 8. Also,z60z2 = f8(x; y) + z0F7(x; y; z0)wheref8(x; y) = xy(x2 + y2 + pxy)(Ax4 +A0y4 +Bxy3 + B0x3y + C(xy)2)and F7 is a homogeneous form of degree 7.A singularity at in�nity has the form (x; y; z; 0) and it must satisfy@f8@x (x; y) = @f8@y (x; y) = @F8@z0 (x; y; z0) = f8(x; y) = 0For a general choice of p;A;A0; B;B0 and C, f8 has distinct linear factors;thus f8 = (f8)x = (f8)y = 0 forces x = y = 0; so we obtain exactly onesingular point at in�nity with x = y = z0 and z = 1. The local equation isF0 : z60 = f8(x; y) + z0F7(x; y; z0) = F8(x; y; z0)Remark 3.0.2. For a general choice of coe�cients, Sing( �F ) consists of a�nite number of isolated singularities.Proof. There is only one singular point on �F � F . By (3.0.1) F has onlythree singularities satisfying (1), (2) and (3). All of the other singularitiesare isolated by (3A.3.0). Thus all singularities of F are isolated. SinceSing( �F ) is closed in the Zariski topology of �F; Sing( �F ) is �nite.Remark 3.0.3. For a general choice of coe�cients, �F is a normal surface.This follows from (3.0.2) since a projective hypersurface of dimension 2with isolated singularities is normal.Part 2In this part the singularities of F are resolved, and adjoints and bi-adjoints are determined locally at each of the three non-rational singularpoints (Corollaries (3.3.1), (3.3.2), (3.5.1), (3.5.2), (3.5.3), (3.5.4), (3.5.5),(3.5.6)).



Zariski Surfaces, Part II 63Lemma 3.1.0. Suppose that k is an algebraically closed �eld of character-istic 2 and w2 = f4(u; v) + f5(u; v) + � � �+ fn(u; v); (1)with n � 5 is an equation where fi(u; v) 2 k[u; v] is homogeneous of degreei, 4 � i � n. Suppose that the singularity at the point u = v = w = 0is isolated. Suppose also that the following condition, referred to later as(3:1:1) is satis�ed:(3:1:1) Neither the system @f4@u (u; 1)=f5(u; 1)=0 nor the system @f4@v (1; v)= f5(1; v) = 0 has a solution.Then (a) equation (1) de�nes an irreducible hypersurfaceS = Spec k[u; v; w](w2 � f4 � f5 � � � � � fn) = Spec k[S]and (b) the singularity at (0,0,0) is resolved by a quadratic transformationfollowed by blowing up a double line which is the exceptional locus.Proof of (a). To show that S is irreducible, it is enough to see that theright hand side of (1) is not a square since f5 6= 0.Proof of (b). First we perform a quadratic transformation. We blow upthe ideal (u; v; w). Since w is integrally dependent on (u; v), therefore by(3A.2.0) the following two a�ne schemes cover QS, the blown up variety:SpecR0 = Spec k hu; vu; wu i = Spec k[u0; v0; w0]and Spec R00 = Spec huv ; v; wv i = Spec k[u00; v00; w00]:These schemes can be identi�ed with hypersurfaces having equations(w0)2 = (u0)2f4(1; v0) + � � �+ (u0)n�2fn(1; v0); (2)(w00)2f4(u00; 1) + � � �+ (v00)n�2fn(u00; 1); (3)respectively. The glueing together is by the isomorphism of open sets(SpecR0)(v0) = (SpecR00)(u00) that is given by R0 huv i = R00 h vui :Next we blow up the `double line', i.e., the coherent sheaf of idealsgiven by (w0; u0) = (w=u; u) on Spec R0 and (w00; v00) = (w=v; v) on Spec R00.Since, in the ring of intersection k[u; v=u;w=u; u=v]; (w=u; u) = (w=v; v),therefore the sheaf of ideals is well de�ned on QS. Blowing it up gives a



64 Joseph Blass, Piotr Blass and Je� Langscheme covered by two a�nes since w0 is integrally dependent on the ideal(u0) and w00 on the ideal (v00).The new scheme eS is thus covered by the spectra of the following tworings: R1 = k �u0; v0; w0u0 � = k hu; vu; wu2 i = k[u1; v1; w1]and R2 = k �u00; v00; w00v00 � = k huv ; v; wv2 i = k[u2; v2; w2]:Again, by (3A.2.0), R1 and R2 are coordinate rings of the following hyper-surfaces: eS1 : w21 = f4(1; v1) + u1f5(1; v1) + � � �+ un�41 fn(1; v1) (a)eS2 : w22 = f4(u2; 1) + v2f5(u2; 1) + � � �+ vn�42 fn(u2; 1): (b)The glueing together is given by Spec(R1) \ Spec(R2) = Spec R1 � 1v1� =Spec R2 � 1u2� = Spec(compositum R1R2in k(S)): We note that k(S) =k(u; v; w). eS has a natural projection down to S. Call it� : eS ! S:That projection restricted to Spec R1 = eS1 and Spec R2 = eS2 correspondsto the natural inclusionsk[u; v; w] ,! R1 = k hu; vu; wu2 i = k[u1; v1; w1]k[u; v; w] ,! R2 = k hv; uv ; wv2 i = k[u2; v2; w2]:To �nd the �bre over the point (0,0,0) on S we observe that in R1 the ideal(u; v; w) is equal to (u) = (u1); and in R2 (u; v; w) is equal to (v) = (v2).Thus the exceptional �bre is the curve u1 = 0 on eS1 glued together with thecurve v2 = 0 on eS2. Equations (a) and (b) together with condition (3.1.1)and the Jacobian criterion su�ce to show that all points of the exceptional�bre on eS are simple for eS. Hence the singularity is resolved by� : eS ! S: �



Zariski Surfaces, Part II 65Lemma 3.2.0 Let S : w2 = f4(u; v) + f5(u; v) + � � �+ fn(u; v) = f(u; v) beas in (3.1.0), satisfying (3.1.1). In addition, we assume condition (3.2.1),namely, that f4(1; u) and f4(v; 1) are not perfect squares (characteristic 2).Then a monomial uavbwc is adjoint at the isolated singular pointu = v = w = 0 if and only if a + b+ 2c � 1, and it is biadjoint if and onlyif a+ b+ 2c � 2.Proof. We continue with the notations of (3.1.0): eS ��! S is the resolution,S is covered by eS1 and eS2, the two a�ne hypersurfaces with equationseS1 : w21 = f4(1; v1) + u1f5(1; v1) + � � �+ un�41 fn(1; v1) = g1(u1; v1)and eS2 : w22 = f4(u2; 1) + v2f5(u2; 1) + � � �+ vn�42 fn(u2; 1) = g2(u2; v2):Denote the restriction of � to eSi by �i. �1; �2 are dual to the ring inclusions��1 ; ��2 given by k[u; v; w] ��1,! k hu; vu; wu2 i = k[u1; v1; w1];k[u; v; w] ��2,! k huv ; v; wv2 i = k[u2; v2; w2]:To determine adjoints we compute the pullback of the canonical generatingdi�erential �s to eS1 and eS2.�s = du dw@f@v = dv dw@f@u :Since ��1(u) = u1; ��1(v) = u1v1; ��1(w) = u21w1; and ��2(u) = u2v2; ��2(v) =v2; ��2(w) = v22w2; we have��11 (�s) = u21 du1dw1@f@v (u1; u1v1) and ��12 (�s) = v22dv2dw2@f@u(v2u2; v2) :But g1(u1; v1) = 1u41 f(u1; u1v1) and g2(u2; v2) = 1v42 f(u2v2; v2), thus by thechain rule @g1@v1 = 1u41 �@f@v� (u1; u1v1) � u1 = 1u31 �@f@v� (u1; u1v1):Similarly @g2@u2 (u2; v2) = 1v32 @f@u (u2; u2v2). Therefore ��11 (�s) = 1u1du1dw1@g1@v1 (u1; v1) = 1u1 �eS1 and ��12 (�s) = 1v2 �eS2 where �eS1 , �eS2 are canonicalgenerating di�erentials on eS1, eS2 regular along the exceptional �bre.



66 Joseph Blass, Piotr Blass and Je� LangThe exceptional �bre of the map � : eS ! S is glued together fromthe curve u1 = 0 on eS1 and v2 = 0 on eS2.These curves on eS1 and eS2 de�ne discrete valuations �1 of k(eS1) and�2 of k(eS2) such that for all nonnegative integers �; �; �1(u�1v�1w1 ) = � and �2(u�2v�2w2 ) = �:(Here we need condition (3.2.1). See (3A.1.0) in the appendix.) Underthe canonical identi�cation of k(eS1) = k(eS2) = k(S) = k(u; v; w); �1 = �2.(The valuation measures the order of pole or zero along the exceptional�bre.) We write � = �1 = �2.Since �(�eS1 ) = �(�eS2 ) = 0 (see [0], (2.34.0)), we obtain �(��11 (�s)) =�(��12 (�s)) = �1. Thus a monomial uavbwc is adjoint at (0,0,0) if and onlyif it pulls back on eS1 and eS2 to a function of value� 1. Since ��11 (uavbwc) =ua+b+2c1 vb1wc1 and ��12 (uavbwc) = va+b+2c2 ua2w22 we see that uavbwc is adjointif and only if a + b+ 2c � 1. Similarly by considering the pullback of w
2swe conclude that uavbwc is biadjoint if and only if a + b + 2c � 2 (see(3A.1.1)). �Corollary 3.2.1 p(u; v; w) 2 k[u; v; w] = k[S] is adjoint at (0; 0; 0) if andonly if p(0; 0; 0) = 0.Corollary 3.2.2 p(u; v; w) is biadjoint if and only if p is a linear combina-tion of monomials uavbwc satisfying a + b+ 2c � 2.Proof. We need only prove the `only if' part. The only monomials notsatisfying a+ b+ 2c � 2 are u; v and nonzero elements of k. Therefore wecan write p(u; v; w) = p1(u; v; w)+ c1u+ c2v+ c3 where p1 is biadjoint andc1; c2; c3 2 k.It is enough to show that p biadjoint implies c1 = c2 = c3 = 0. Ifp is biadjoint, then p is adjoint, so c3 = 0 by (3.2.1). Thus c1u + c2v isbiadjoint. Since the pullback ��11 (c1u+ c2v) = u1(c1+ c2v1), we must have�(u1(c1+c2v1)) � 2; which implies �(c1+c2v1) � 1. But if (c1; c2) 6= (0; 0),then by lemma (3A.1.0), part (iii), �(c1+ c2v1) = 0. Therefore c1 = c2 = 0.�Proposition 3.3.0 Take the equation of F ,z2 = xy(x2 + y2 + pxy + 1)Q;where Q = Ax4 + A0y4 + Bxy3 + B0yx3 + C(xy)2 + xy2 + yx2 + Ax2 +A0y2 +Dxy. Then for a general choice of coe�cients the origin (0; 0; 0) isan isolated singularity that satis�es conditions (3:1:1) and (3:2:1).Proof. By (3.0.2) we may assume that (0; 0; 0) is an isolated singularity.We have z2 = xy(Ax2+A0y2+Dxy)+xy(xy2 +yx2) + higher order terms.



Zariski Surfaces, Part II 67We use the notations of lemma (3.1.0) with u = x; v = y; w = z. Thenf4(x; 1) = x(Ax2 + A0 +Dx);f5(x; 1) = x2(x+ 1);@f4@x (x; 1) = Ax2 +A0:If (A + A0)A0 6= 0, then f5(x; 1) and @f4@x (x; 1) have no common roots.Similarly, if (A + A0)A 6= 0 then f5(1; y) and @f4@y (1; y) have no commonroots. If AA0 6= 0; f4(x; 1) and f4(1; y) are not perfect squares. Therefore,for the general choice of coe�cients (A+A0)AA0 6= 0 conditions (3.1.1) and(3.2.1) are satis�ed. � We restate (3.2.1) in terms of adjoint surfaces (see(2.16.1) for the de�nition of an adjoint surface).Corollary 3.3.1 Adjoint surfaces to our surface F pass through the sin-gular point (0; 0; 0). Conversely any surface that passes through (0; 0; 0) isadjoint.Corollary 3.3.2 xy is biadjoint at (0; 0; 0).Proof. Follows from (3.2.2) and (3.3.0). �Proposition 3.4.0 The singularity of F at (0; 1; 0) is resolved as follows.After a single quadratic transform one obtains in the exceptional locus onlyone isolated singular point. It is a quadruple point satisfying (3:1:1) and(3:2:1).This is true for a general choice of parameters in the equation of F .The same fact is true for the singularity of F at (1,0,0).Proof. The last statement follows by symmetry of the equation of F interms of x and y and by interchanging x and y, A and A0, B and B0,etc. in the below proof. For a general choice of coe�cients (0; 1; 0) is anisolated singularity. To get the local equation of F replace y by �y + 1 toget z2 = x(�y + 1)(x2 + �y2 + px�y + px) �Q where�Q = Q(x; �y) + x(B +D + 1) + x2(C + 1) + B0x3 +Bx(�y2 + �y):Blow up the ideal (x; �y; z) to obtain a new variety QF . Since z is integrallydependent on (x; �y); QF is (by (3A.2.0)) covered by two a�nes E1; E2. The�rst a�ne chart E1 is given by (see (3A.2.0)) E1 = Spec R1 whereR1 = k hx; �yx; zxi = k[x0; �y0; z0]:E1 is then a hypersurface with equationz02 = x0(�y0x0 + 1)(x0 + �y02x0 + px0�y0 + p)(B +D + 1) + x0 eQ(x0; y0);



68 Joseph Blass, Piotr Blass and Je� Langwhere eQ(x0; y0) is some polynomial. Along the exceptional �bre given byx0 = 0; @=@x0 is easily computed and equals p(B + D + 1). This is 6= 0 ifwe assume p 6= 0 and B +D + 1 6= 0. And under these assumptions thereare no singularities along the exceptional locus in this chart.The second a�ne chart E2 is given, again by (3A.2.0), by E2 = SpecR2 where R2 = k �x�y ; �y; z�y � = k[x00; y00; z00]:Again E2 is a hypersurface, which is given byE2 : z002 = x"�y00(�y00 + 1)(x002�y00 + �y00 + px00�y00 + px00)[(B +D + 1)x00+A0�y00 + (B +D)x00�y00 + �y00Q00(x00; �y00)];where Q00(x00; �y00) contains only monomials of degree two or higher.Along the exceptional locus �y00 = 0 and therefore @=@�y00 is given byx00px00(X + D + 1)x00. Thus if we assume p(B + D + 1) 6= 0; x00 = �y00 =z00 = 0 is the only singular point. For a generic choice of coe�cients, thesingular point will be isolated since the original singularity is isolated. It isquadruple, so it is only left to check conditions (3.1.1) and (3.2.1). Hereafterwe shall drop the primes and bars.We have z2 = f4(x; y)+ f5(x; y) + higher order terms, where f4(x; y)= xy(px + y)(�x + A0y) with � = B + D + 1. Also f5(x; y) = xy2[(px +y)(�x + A0y) + px(�x+ A0y) + (px+ y)(B +D)x]. Consequently,f4(x; 1) = x(px+ 1)(�x+ A0)and f4(1; y) = y(p + y)(� +A0y):The partial derivatives give@f4@y (1; y) = A0y2 + p� (1)and @f4@x (x; 1) = p�x2 + A0 (2)Also(1)0 f5(1; y) = y2 [(p + y)(� + A0y) + p(� + A0y) + (B +D)(p+ y)]= y2 �A0y2 + (pA0 + � + pA0 +B +D)y + p(B +D)�= y2 �A0y2 + (� + � + 1)y + p(B +D)�= y2 �A0y2 + y + p(� + 1)�Similarly f5(x; 1) simpli�es to(2)0 f5(x; 1) = x(x2p(� + 1) + x+ A0):



Zariski Surfaces, Part II 69We have to show that for a general choice of parameters, (1); (1)0 have nocommon root, and the same for (2) and (2)0.If @f4@y (1; y) = f5(1; y) = 0, then y2(y + p) = 0; which implies p� = 0or A0p = �, but this is not true for a general choice of coe�cients.If @f4@x (x; 1) = f5(x; 1) = 0, then x2(xp+1) = 0; which impliesA0 = 0or � = A0p, and again this is not the case for a general choice of parameters.To check condition (3.2.1) observe that in the above notation f4(1; y)= y(y + p)(� + A0y) is not a perfect square if A0 6= 0 in characteristic 2.Also f4(x; 1) = x(px+ 1)(�x+ A0) is not a square if p� 6= 0: �Proposition 3.5.0 Let �y = y + 1 and let F be our surface. A monomialxa�ybzc is adjoint at (0; 1; 0) if and only if b + 2a + 3c � 1 and biadjoint ifand only if b+ 2a+ 3c � 2.Proof. From the resolution (3.4.0) we know that if we write F in terms ofx and �y, then we haveF : z2 = f3(x; �y) + f4(x; �y) + � � �+ f8(x; �y) = f(x; �y):Also if we blow up (x; �y; z) we obtain QF covered by two a�ne hypersur-faces: E1 = Spec k hx; �yx; zxi = Spec k[x; �y0; z0]where E1 : z02 = 1x02 f(x0; �y0x0) = g1(x0; �y0)and E2 = Spec k �x�y ; �y; z�y� = Spec k[x00; �y00; z00]with equation E2 : z002 = 1�y002 f(x00�y00; �y00) = g2(x00; �y00):E1 is non-singular along the exceptional �bre and E2 has only one singularpoint x00 = �y00 = z00 = 0 on the exceptonal �bre. That singular point is anisolated singularity of E2 satisfying (3.1.1) and (3.2.1).By (3.2.0) a functionx00��y00�z00 is � adjoint if and only if �+ � + 2 � 1;biadjoint if and only if �+ � + 2 � 2:We �rst compute the pullback of the canonical generating di�erential on Fto E1. The projection of E1 to F is given byk[x; �y; z] ,! k hx; �yx; zxi = k[x0; �y0; z0]



70 Joseph Blass, Piotr Blass and Je� Langso that x! x0; �y ! �y0x0; z ! z0x0. We write�F = dx dz@f@�y :The pullback to E1 is x0dx0dz0�@f@�y� (x0; �y0x0)but @g1@�y0 (x0; �y0) = 1x0 �@f@�y� (x0; �y0x0):Therefore the pullback of �F to E1 isdx0dz0�@g1@�y0 � (x0; �y0)which is a canonical generating di�erential on E1; �E1, regular along theexceptional �bre which is nonsingular.Similarly �F pulls back to d�y00dz00� @g2@�y00� (x00; �y00)the generating di�erential �E2 on E2.Because of the above computations and since E1 is already non-singular it is clear that a function p(x; �y0; z) 2 k[x; �y; z] is adjoint at (0,0,0)if and only if its pullback to E2 is locally adjoint at x00 = �y00 = z00 = 0.Taking a monomial xa�ybzc its pullback is x00a(�y00)a+b+cz00c. This isadjoint by (3.2.0) if and only if b+ 2a+ 3c � 1 and is biadjoint if and onlyif b+ 2a+ 3c � 2. �Corollary 3.5.1 Let p 2 k[F ] = k[x; y; z], let �y = y + 1 and write p =p(x; �y; z); then p(x; �y; z) is adjoint at x = �y = z = 0 if and only ifp(0; 0; 0) = 0.Corollary 3.5.2 Adjoint surfaces to our surface F pass through (1; 0; 0).Conversely, any surface passing through (1; 0; 0) is adjoint to F at thatpoint.Corollary 3.5.3 Adjoint surfaces pass through (0,1,0) and any surfacepassing through (0,1,0) is adjoint to F at that point.Proof. Symmetry in x; y. �
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