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(h) How about if we assume S is a complete intersection?

(3) This conjecture concerns the surface X defined by the affine equa-
tion 22 = C;C; where C; is a sufficiently general curve of degree
1 and 2 + j = 2m for some m > 3. Furthermore we assume X is
not a ruled surface. The second Betti number of X is given by the
formula (see [3, p. 15]) b2(X) = 2(2m? — 3m + 2).

(a) Suppose i +j = 6. Then X is K3, b2(X) = 22. If 2% = Cé,
then X has minimal Picard number 1. The conjecture is
that the Picard group of X is generated by the exceptional
fibers lying over the singular points of the curve C;Cj, and
a hyperplane section. There are 3 cases:

(i) 2% = C1Cs. Conjecture: Pic X = Z°.
(ii) 22 = C2C4. Conjecture: Pic X = Z°.
(iii) 22 = C3D;5. Conjecture: Pic X = 7.
(b) Generally, 2> = C;Cj, i +j = 2m. Conjecture: PicX =
VAR

(4) Consider the surface 22 = C;C; as in 5 above, ¢+ j = 2m. De-
homogenize: z? = Ci(z,y,1)Cj(z,y,1). Conjecture: this affine
surface has Cl(X) = Z/2. Is this also true in characteristic 27

(5) Consider the surface z> = zy + hs + hg + hs + hgs, where h; is a
general form of degree 7. Conjecture: this surface is generically
factorial, hence any node has trivial class group.

(6) Let Cg be a generic curve with a node at (0,0,1) and X the nonsin-
gular complete minimal model for 22 = Cg. Conjecture: Pic X =
7 @ 7 and the affine surface 22 = Cg is factorial.

(7) Consider the following examples and try to explain:

(a) Let X be a sufficiently general quintic with a triple point at
0: 23 +vy°+23+ fa+f5 = 0. Then 1 blow up X — X resolves
the singularity and the exceptional fiber is an elliptic curve
E. Then

0— B(X)—>B(X—E)— H(E,Q/Z)— H*(X,Q/Z)

is exact. Claim: py = p, = 3 for X, which implies b; = 0,
hence H? = 0. So there exist division algebras over K which
ramify on the singular point of X.
(b) If X is a cone over E, the above doesn’t happen: B(X’) =
B(X — E).
(8) Let X be a normal surface with an isolated singularity p. As-
sume Cl(O,) = 0. Let X; — X be a blow up of p followed by a
normalization. Are all of the new local rings still factorial?
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Abstract

The following open questions are submitted to the Electronic Scottish

Book.

(1) What about Hoobler’s computation of Brauer groups of Zariski
surfaces? In the paper [2] he computes the Brauer group as trivial,
but this contradicts the main result of [1].

Let S be a nonsingular projective surface such that Pic § = Z. We
ask whether Pic S is generated by the divisor class of an irreducible
curve €' C S. The question arises because this was part of the
hypotheses of Theorem 1.1 of [4]. Certainly we can assume § is
minimal.

(2)

(a)

Some sufficient conditions are: Let L = O(D) be a generator
for Pic S. If |D| is not composite with a pencil, then the
corresponding morphism to projective space § — P has
image whose dimension is 2. By Bertini’s theorem, there is
an irreducible curve C'in |D].

If there is an irreducible curve C such that S — C' is factorial,
then Pic S is generated by C.

If k(S) = —oo, then S =2 PZ and it is obvious.

If k(S) = 0, the only possibility is that S is a K3 surface. Is
Pic S generated by an irreducible curve, for a K3 surface?
How about for an elliptic surface S, x(S) = 1, PicS =77
How about for a surface S of general type, £(S5) = 2, Pic § =
77

For hyperelliptic surfaces, 1 = 2 so Pic S # Z. For abelian
surfaces 01 = 4, Pic S # Z. For Enriques surfaces, Pic S =
720 7/2.
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