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N.V. Krylov 17We are presenting here two results. The �rst one is related to the fol-lowing problem. Consider the simplest one-dimensional SPDEdu(t; x) = 12uxx(t; x) dt+ g(t; x) dwt t > 0; u(0; x) = 0;where wt is a one-dimensional Wiener process. The solution of this problemis known to be u(t; x) = Z t0 Tt�sg(s; �)(x) dwt;where Tth(x) = Eh(x+wt). If g is non random,E Z T0 jju(t; �)jjp1;pdt = N (p) Z T0 ZRd[Z t0 j(I��)1=2Tt�sg(s; �)(x)j2 ds]p=2 dx dt;and in order to prove that u 2 H1p we have to estimate the last integral.Such estimates are considered in Section 1.In Section 2 we prove the so-called uniform localization theorem forHnp and some facts related to it. This theorem is needed when one wantsto prove existence theorems for equations with variable coe�cients on thebasis of existence theorems for equations with constant coe�cients. Roughlyspeaking the theorem says that the Hnp -norm of a function can be expressedin terms of norms of products of this functions with elements of a smoothpartition of unity. Such a theorem for n � 0 is proved in [S], and thegeneral case is essentially covered by Theorem 2.4.7 [T2]. In [K] we need thecorresponding result, for example, for n slightly less than �3=2. Althoughour version of the uniform localization theorem and the important Lemma2.1 can be obtained through a series of references, sometimes accompaniedby words \as in the proof...", to results on function spaces more generalthan Hnp from [T2], we think that our proofs have their merits too, beingbased only on very well known (to specialists in PDEs) properties of Hnp .AcknowledgementsThe author is sincerely grateful to E. Fabes, C. Kenig, W. Littman andH. Triebel for very helpful advice and discussions and S. Lapic for pointingout several mistakes and misprints in the last draft of the article.1. A generalization of the Littlewood-Paley inequalityLet Tt; t � 0, be the semigroup corresponding to the heat equation@u@t = 12�uin Rd. The classical Littlewood-Paley inequality says that for any p 2 (1;1)and g 2 Lp it holds thatZRd [Z 10 jrTtg(x)j2 dt]p=2 dx � N jjgjjpp; (1.1)



18 A Generalization of the Littlewood-Paley Inequalitywhere the constant N depends only on d; p.Here we want to generalize this fact by provingTheorem 1.1 Let H be a Hilbert space, p 2 [2;1), �1 � a < b � 1,g 2 Lp((a; b)�Rd;H). ThenZRd Z ba [Z ta jrTt�sg(s; �)(x)j2H ds]p=2 dt dx � N ZRd Z ba jg(t; x)jpH dt dx;(1.2)where the constant N depends only on d; p.Remark 1.1 The Littlewood-Paley inequality (1.1) follows directly from(1.2) if p � 2. Indeed, take a = 0; b = 2; g(s; x) = g(x). Then the left-handside of (1.2) equalsZRd Z 20 [Z t0 jrTsg(t � s; �)(x)j2H ds]p=2 dt dx� ZRd Z 21 [Z t0 jrTsg(x)j2H ds]p=2 dt dx � ZRd [Z 10 jrTsg(x)j2H ds]p=2 dx:Thus, from (1.2) it follows thatZRd [Z 10 jrTsg(x)j2H ds]p=2 dx � N ZRd jg(x)jpH dx;and a standard argument based on the self-similarity allows us to replacethe upper limit 1 by in�nity keeping the same constant N .This gives (1.1) for p � 2 and for Hilbert space valued g. It is a standardfact that from the Hilbert-space version of (1.1) for p � 2 the same inequalityfollows for p 2 (1; 2) by duality.It is also well known that having (1.1) proved for p 2 (1; 2], the casep 2 [2;1) can be treated by duality argument. In contrast with this \sym-metry" we haveRemark 1.2 For p 2 (1; 2) estimate (1.2) is not true even if d = 1; H =R. Indeed, take a = 0, a �nite b, �(x) = (2�)�1=2 exp(�x2=2), g(s; x) =�(x)e��s where � > 0. ThenrTtg(s; x) = pt @@x [t�1=2�(x=pt) � �(x)]e��s= pt @@x [(t+ 1)�1=2�(x=pt+ 1)]e��s = pt e��s(t+ 1)�1�0(x=pt+ 1);and as easy to see the limit as � goes to in�nity of the product of theleft-hand side of (1.2) and �p=2 equalslim�!1 ZR Z b0 [� Z t0 x22�(t � s + 1)3 e�2�se� 1t�s+1 x2 ds]p=2 dt dx: (1.3)



N.V. Krylov 19Furthermore for � � 1Z t0 �x22�(t� s + 1)3 e�2�se� 1t�s+1x2 ds = Z t=20 + Z tt=2� Nx2(t+ 2)3 e� 1t+1x2 Z t=20 �e�2�s ds + e��tNx2e� 2t+2x2 � Nx2(t+ 2)3 e� 2t+2x2 :This allows us to evaluate the limit in (1.3) by using the dominated conver-gence theorem. We see that the limit equalsZR Z b0 � x24�(t+ 1)3 e� 1t+1 x2 �p=2 dt dx;which is �nite and non zero.Thus the left-hand side of (1.2) is of order ��p=2. At the same time theright-hand side of (1.2) is of order ��1, and ��p=2 is much bigger than ��1if p 2 (1; 2) and �!1.Proof of Theorem 1.1. First note that by considering g(t; x)I(a;b)(t)instead of g(t; x) we can reduce the general case to the one in which a =�1; b = 1. Therefore, only this case we consider below. Next, for p = 2the application of the Fourier transformation shows that the left-hand sidein (1.2) equalsZRd Z 1�1 Z t0 j�j2e�j�j2(t�s)j~g(s; �)j2H ds dt d� = ZRd Z 1�1 j~g(s; �)j2H ds d�;what in its turn equals the right-hand side of (1.2). This proves (1.2) forp = 2 and shows that if we introduce the operator P by the formulaPg(t; x) = [Z t�1 jrTt�sg(s; �)(x)j2H ds]1=2;then P is a bounded (actually, isometric) operator from L2(Rd+1;H) intoL2(Rd+1; R).Due to the parabolic sharp inequality (jjf jjp � N jjf#jjp, see [B]) andthe Marcinkiewicz interpolation theorem the parabolic version of the Stam-pacchia interpolation theorem is available, and we will prove our theo-rem if we prove that P is a bounded operator from L1(Rd+1;H) intoBMO(Rd+1; R). More precisely, it su�ces to show that if jg(t; x)jH � 1 forall (t; x) 2 Rd+1 and g vanishes for jtj+ jxj large enough, then for any setQ = (t0; t0+ r2)�fx : jx�x0j � rg with t0 2 R; r > 0; x0 2 Rd there exista constant gQ 2 R (depending on g;Q) and an absolute constant N suchthat ZQ jPg(t; x)� gQj2 dt dx � N jQj: (1.4)A shift of the origin shows that we can always take t0 = 0; x0 = 0 in (1.4).Furthermore, if we replace g(t; x) by g(tr�2; xr�1) then we see that without



20 A Generalization of the Littlewood-Paley Inequalityloss of generality we can take r = 1 in (1.4). Thus, let t0 = 0; x0 = 0; r = 1.Also observe that for t 2 (0; 1)Pg(t; x) � [Z �1�1 jrTt�sg(s; �)(x)j2H ds]1=2 + [Z t�1 jrTt�sg(s; �)(x)j2H ds]1=2:= P1g(t; x) + P2g(t; x):On the other hand obviously P1g � Pg. It follows that for any constant gQjPg(t; x)� gQj � jP1g(t; x)� gQj+ jP2g(t; x)j: (1.5)Further, for s < tjrTt�sg(s; �)j2H = 12�(jTt�sg(s; �)j2H) � @@t (jTt�sg(s; �)j2H):It follows thatZ t�1 jrTt�sg(s; �)j2H ds = 12� Z t�1 jTt�sg(s; �)j2H ds � @@t Z t�1 jTt�sg(s; �)j2H ds+jg(t; �)j2H :Using this and taking a function � 2 C1(Rd) such that �(x) = 0 ifjxj � 2, �(x) = 1 if jxj � 1, we see thatZQ jP2g(t; x)j2 dt dx = Zjxj<1 Z 10 (Z t�1 jrTt�sg(s; �)(x)j2H ds) dt dx� ZRd Z 10 �(Z t�1 jrTt�sg(s; �)(x)j2H ds) dt dx =ZRd Z 10 f�jg(t; x)j2H + (12��) Z t�1 jTt�sg(s; �)(x)j2H dsg dt dx+ ZRd �fZ 0�1 jT�sg(s; �)(x)j2H ds� Z 1�1 jT1�sg(s; �)(x)j2H dsg dx:The last expression is obviously bounded by a constant independent of g(recall that jgjH � 1).Owing to (1.5) it remains only to �nd an appropriate gQ such thatZQ jP1g(t; x)� gQj2 dt dxis bounded by a constant independent of g. Actually, it turns out that asgQ one can take any particular value of P1g(t; x) in Q. Indeed, as we willsee �rst derivatives of P1g(t; x) are bounded on Q.



N.V. Krylov 21Let us �rst estimate the derivatives with respect to x. By the Minkowskiinequality j @@xiP1g(t; x)j � [Z �1�1 jr @@xiTt�sg(s; �)(x)j2H ds]1=2:Here @2@xixj Tt�sg(s; �)(x)= 1(2�(t� s))d=2 ZRd [ (xi � yi)(xj � yj)(t� s)2 � �ijt� s ]e� 12(t�s) (x�y)2g(s; y) dy:It follows thatjr @@xiTt�sg(s; �)(x)j2H � N(t � s)2 f 1(t� s)d=2 ZRd e� 1t�s (x�y)2 dyg2 = N(t � s)2 ;and for t � 0[Z �1�1 jr @@xiTt�sg(s; �)(x)j2H ds]1=2 � N [Z �1�1 1(t� s)2 ds]1=2� N [Z �1�1 1(�s)2 ds]1=2 = N:Thus, we get on Q the estimate of the gradient of P1g(t; x) with respectto x. In like manner the �rst derivative of P1g(t; x) with respect to t canbe estimated, and the theorem is proved.Remark 1.3 As explained in the introduction, in [K] we also need thefollowing version of (1.2):ZRd Z ba [Z ta j(I ��)1=2Tt�sg(s; �)(x)j2H ds]p=2 dt dx �[1 + (b � a)p=2]N (d; p) ZRd Z ba jg(t; x)jpH dt dx:To deduce this from (1.2) it su�ces to observe that(I ��)1=2Tt�sg = (I ��)Tt�s(I ��)�1=2g = Tt�sRg � @@xiTt�sPig;where R = (I � �)�1=2, Pi = (@=@xi)R are bounded operators in Lp forany p 2 (1;1), and by the well-known estimate of norms of convolutionsZRd Z ba [Z ta jTt�sRg(s; �)(x)j2H ds]p=2 dt dx



22 A Generalization of the Littlewood-Paley Inequality� ZRd Z ba [Z ta Tt�sRjg(s; �)j2H(x) ds]p=2 dt dx �(Z b�a0 TtR1(0) dt)p=2 ZRd Z ba jg(t; x)jpH dt dx = (b�a)p=2 ZRd Z ba jg(t; x)jpH dt dx:2. Uniform localization theorem for spaces of Bessel potentialsOur aim here is to prove the following result.Theorem 2.1 Let p 2 (1;1); n 2 (�1;1), � > 0 and let �k 2 C1,k = 1; 2; 3; :::. Assume that for any multi-index � and x 2 Rdsupx2RdXk jD��k(x)j �M (�); Xk j�k(x)jp � �; (2.1)whereM (�) are some constants. Then there exists a constant N = N (d; n;M; �)such that for any f 2 Hnpjjf jjpn;p � NXk jj�kf jjpn;p; Xk jj�kf jjpHnp � N jjf jjpHnp : (2.2)To prove the theorem we need a lemma in which we denote L� = �I��,and for the Green's function G(x) of the operator (I ��)m, m � 0, � > 0and multi-indices � such that j�j � 2m � 1 we de�neGm��(x) := �(d�j�j)=2D� [G(xp�)] = �d=2[D�G](xp�):Observe that R jGm��j dx is �nite and independent of � since j�j � 2m �1. Also observe that the Green's function of Lm� , m > 0, is given by�d=2�mG(xp�).Lemma 2.1 Let m 2 f0; 1; 2; :::g, � � 1, and " 2 (0; 1=2). Let �k 2 C1,k = 1; 2; 3; :::. Assume that for any multi-index �supx2RdXk jD��k(x)j � M (�):Then (i) there exist constants cm�� such that for any f 2 C10Lm� [�kf ] = �kLm� f + X0<j�j�2m�j�jcm����j�j=2[D��k](Gm�� � Lm� f); (2.3)Lm� [�kL�m� f ] = �kf + X0<j�j�2m�j�jcm����j�j=2[D��k](Gm�� � f); (2.4)L�m� [�kLm� f ] = �kf + X0<j�j�2m�j�jcm����j�j=2Gm�� � [(D��k)f ]; (2.5)



N.V. Krylov 23L�m� [�kf ] = �kL�m� f + X0<j�j�2m�j�j cm����j�j=2Gm�� � [(D��k)L�m� f ];(2.6)(ii) there exists a constant N = N (p; d;m; ";M ) such that for any f 2 C10we haveXk jjL�m=2� fL"�[�kf ] � �kL"�fgjjpp � N�p("�1=2)jjL�m=2� f jjpp: (2.7)Proof. (i) By the Leibnitz rule for certain constants cm�� we haveLm� [�kf ] = �kLm� f + X0<j�j�2m�j�jcm���m�(j�j+j�j)=2[D��k]D�f =:�kLm� f + X0<j�j�2m�j�j cm���m�(j�j+j�j)=2[D��k]D�L�m� [Lm� f ];and this gives us (2.3). This equation is true not only for f 2 C10 but alsofor f 2 H2mp . Therefore we can replace f by L�m� f in (2.3). This givesus (2.4). Taking conjugate operators to those participating in (2.3) we get(2.5). Equation (2.6) is obtained from (2.5) by substitution of L�m� f insteadof f .(ii) According to [KP] for a constant c"L"�f = c" Z 10 (e��t=2Tt � I)f dtt1+" ;Ik(x) := L"�[�kf ](x)��kL"�f(x) = c" Z 10 e��t=2(Tt[�kf ](x)��kTtf(x)) dtt1+" =c" Z 10 e��t=2 ZRd  ( ypt )[�k(x + y) � �k(x)]f(x+ y) dy dtt1+d=2+" ;where  (x) = (2�)�d=2 exp(�jxj2=2). Hence by the H�older (or by the Min-kowski) inequality jIkj � I1kI2k whereI1k(x) = c"fZ 10 e��t=2 ZRd  ( ypt )j�k(x+ y) � �k(x)j dy dtt1+d=2+" g1�1=p;I2k(x) = fZ 10 e��t=2 ZRd  ( ypt )j�k(x+y)��k(x)jjf(x+y)jp dy dtt1+d=2+" g1=p:Since Pk j�k(x + y) � �k(x)j � N jyj, we haveZRd  ( ypt )j�k(x+ y) � �k(x)j dy � N ZRd jyj ( ypt ) dy = Nt(d+1)=2;I1k � N�("�1=2)(1�1=p); �(1=2�")(p�1)Xk jjIkjjpp � NXk jjI2kjjpp =



24 A Generalization of the Littlewood-Paley InequalityN ZRd Z 10 e��t=2 ZRd  ( ypt )Xk j�k(x+ y) � �k(x)jjf(x+ y)jp dtdydxt1+d=2+" �N Z 10 e��t=2 ZRd jyj ( ypt ) dy dtt1+d=2+" jjf jjpp = N�"�1=2jjf jjpp:This gives us (2.7) for m = 0. In the general case when m is even weapply (2.3), (2.6) and the fact that the operators L� and f ! Gm�� � fcommute. For instance, by (2.6)L�m� fL"�[�kf ] � �kL"�fg = L"�(L�m� [�kLm� g]) � L�m� [�kLm� (L"�g)] =L"�[�kg]��kL"�g+ X0<j�j�2m�j�j cm����j�j=2Gm���fL"�[(D��k)g]�(D��k)L"�ggwhere g = L�m� f . After this one can apply (2.7) with m = 0 along withthe Minkowski inequality (to estimate the norm of Gm�� � h through thenorm of h), and then one gets (2.7) for the sign + and for even m. Theinequality with � is proved similarly on the basis of (2.3).To consider the remaining possibility of odd m, we notice that as is wellknown for any njjLn�f jjp � jjLn�1=2� f jjp + dXi=1 jjLn�1=2� fxi jjp;jjLn�1=2� f jjp � ��1=2jjLn�f jjp: (2.8)HenceXk jjL�m=2� fL"�[�kf ]��kL"�fgjjpp � NXk jjL�m=2�1=2� fL"�[�kf ]��kL"�fgjjpp+NXk;i jjL�m=2�1=2� fL"�[�kf ]xi�(�kL"�f)xigjjpp � N�p("�1=2)jjL�m=2�1=2� f jjpp+NXk;i jjL�m=2�1=2� fL"�[�kfxi ]� �kL"�fxigjjpp+NXk;i jjL�m=2�1=2� fL"�[�kxif ]� �kxiL"�fgjjpp;and (2.7) follows. The lemma is proved.Proof of Theorem 2.1. It su�ces to consider only f 2 C10 and sincejjL�n� (I � �)njj < 1 for any n 2 (�1;1), where the operator norm istaken in Lp, we only need to show that for a � = �(d; n;M; �) � 1jjLn�f jjpp � NXk jjLn�[�kf ]jjpp; Xk jjLn�[�kf ]jjpp � N jjLn�f jjpp: (2.9)



N.V. Krylov 25We consider three cases of possible values of n.First case: jnj 2 f0; 1; 2; :::g. If n = �m � 0, we notice thatXk jj X0<j�j�2m�j�jcm����j�j=2Gm�� � [(D��k)L�m� f ]jjpp �N��p=2 X0<j�j�2m�j�jXk jjGm�� � [(D��k)L�m� f ]jjpp �N��p=2 Xj�j�2mXk jj[(D��k)L�m� f ]jjpp � N��p=2jjL�m� f jjpp:Hence by (2.6) and the Minkowski inequality for an appropriate N; �(1� N��p=2)jjLn�f jjpp � ��1Xk jj�kL�m� f jjpp � N��p=2jjL�m� f jjpp �NXk jjL�m� [�kf ]jjpp � (N +N��p=2)jjL�m� f jjpp;which yields (2.9).If n = m � 0, it su�ces to repeat the above argument using (2.3) insteadof (2.6).Second case: 2jnj 2 f1; 2; 3; :::g. Here we again use (2.8). Then from the�rst case we getjjLn�f jjpp � NXk jjLn�1=2� [�kf ]jjpp +NXk;i jjLn�1=2� [�kfxi ]jjpp �NXk jjLn�1=2� [�kf ]jjpp+NXk;i jjLn�1=2� (�kf)xi jjpp+NXk;i jjLn�1=2� [�kxif ]jjpp �NXk jjLn�[�kf ]jjpp +N��p=2jjLn�f jjpp;which for large � gives the �rst inequality in (2.9). In like manner the secondone is proved.Third case: n = m+ ", 2jmj 2 f0; 1; 2; 3; :::g, " 2 (0; 1=2). To prove (2.9) inthis situation it su�ces to notice that by (2.7) and by the second casejjLn�f jjpp = jjLm� [L"�f ]jjpp � NXk jjLm� [�kL"�f ]jjpp � NXk jjLm� L"�(�kf)jjpp+N�p("�1=2)jjLm� f jjpp = NXk jjLn�(�kf)jjpp +N�p("�1=2)jjLm� f jjpp �NXk jjLn�(�kf)jjpp +N��p=2jjLn�f jjpp;



26 A Generalization of the Littlewood-Paley InequalityXk jjLn�(�kf)jjpp =Xk jjLm� [L"�(�kf)]jjpp �NXk jjLm� [�kL"�f ]jjpp + N��p=2jjLn�f jjpp � N jjLn�f jjpp:The theorem is proved.Remark 2.1 In the proof of the second inequality in (2.2) we did not usethe second condition in (2.1). Therefore, under the conditions of Lemma 2.1alone the operator f ! fLn1�kL�n1 f : k = 1; 2; 3; :::g is a bounded operatorfrom Lp into Lp(Rd; lp). Its conjugate is also bounded, which means thatunder the conditions of Lemma 2.1 for any n 2 (�1;1), q 2 (1;1) thereis a constant N = N (n; p; d;M ) such that for any sequence of functionsgk 2 Lq satisfyingPk jjgkjjqq <1 we havejjXk �kgkjjqn;q � NXk jjgkjjqn;q: (2.10)Interestingly enough, this shows that, actually, the �rst inequality in (2.2)follows from the second one. To see this it su�ces to take in (2.10) �k =�k(Pi �2i )�1 and gk = �kf . References[B] N. Burger, Espace des fonctions �a variation moyenne born�ee sur unespace de nature homog�ene, C. R. Acad. Sc. Paris, Vol. 286 (1978),139-142.[KP] M.A. Krasnoselskii et al. \Integral operators in spaces of summablefunctions", Nauka, Moscow, 1966 in Russian; English translation: No-ordho� International Publishing, Leyden, 1976.[K] N.V. Krylov, On Lp{theory of stochastic partial di�erential equationsin the whole space, in preparation.[S] R.S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. andMech., Vol. 16, no. 9 (1967), 1031-1060.[T1] H. Triebel, \Theory of function spaces", Birkh�auser Verlag, Basel{Boston{Stuttgart, 1983.[T2] H. Triebel, \Theory of function spaces II", Birkh�auser Verlag, Basel{Boston{Berlin, 1992.This electronic publication and its contents are ccopyright 1994by Ulam Quarterly. Permission is hereby granted to give awaythe journal and it contents, but no one may \own" it. Any andall �nancial interest is hereby assigned to the acknowledged au-thors of the individual texts. This noti�cation must accompanyall distribution of Ulam Quarterly.


