Ulam Quaterly — Volume 2, Number 4, 1994

A Generalization of the
Littlewood-Paley Inequality
and
Some Other Results Related to
Stochastic Partial Differential
Equations

N.V. Krylov!

University of Minnesota
School of Mathematics
Minneapolis, Minnesota

Abstract

We prove a “parabolic” type Littlewood-Paley inequality and a theorem
relating norms of functions in H,’ to norms of their products with elements
of a partition of unity.

Introduction

In the author’s work [K] on Lp-theory of stochastic partial differential
equations some results concerning spaces of Bessel potentials turned out
to be necessary. The author could not find them in the literature in the
necessary form, and at the same time they look useful for other applications.
These are the reasons to publish them in a separate paper.

Recall (see, for instance, [T1], [T2]) that the space H} = H;}(Rd), pE
(1,00), n € (=00, ), of Bessel potentials is defined as the closure of C§° =
C§°(RY) with respect to the norm

lllnp = 12 = A)*?ully, where ||h]], = (/Rd (@) de)'/?.

1Supported in part by NSF Grant DMS-9302516.

16



N.V. Krylov 17

We are presenting here two results. The first one is related to the fol-
lowing problem. Consider the simplest one-dimensional SPDE

1
du(t,z) = iuw(t, z)dt+ g(t,z)dw; t>0,u(0,2)=0,

where w; 18 a one-dimensional Wiener process. The solution of this problem
i1s known to be

t
ute) = [ Tigls @) dus
0
where Tih(z) = Eh(x + wy). If g is non random,

T
E/ lut, I, dt = // /|1 AVYET,_g(s, ) ()| ds]P/? dee dt,
0 R

and in order to prove that u € H; we have to estimate the last integral.
Such estimates are considered in Section 1.

In Section 2 we prove the so-called uniform localization theorem for
H} and some facts related to it. This theorem is needed when one wants
to prove existence theorems for equations with variable coefficients on the
basis of existence theorems for equations with constant coefficients. Roughly
speaking the theorem says that the H”-norm of a function can be expressed
in terms of norms of products of this functions with elements of a smooth
partition of unity. Such a theorem for n > 0 is proved in [S], and the
general case is essentially covered by Theorem 2.4.7 [T2]. In [K] we need the
corresponding result, for example, for n slightly less than —3/2. Although
our version of the uniform localization theorem and the important Lemma
2.1 can be obtained through a series of references, sometimes accompanied
by words “as in the proof...” | to results on function spaces more general
than H from [T2], we think that our proofs have their merits too, being
based only on very well known (to specialists in PDEs) properties of Hy.
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1. A generalization of the Littlewood-Paley inequality

Let T3,t > 0, be the semigroup corresponding to the heat equation
Ou 1
— = -Au
a2

in R?. The classical Littlewood-Paley inequality says that for any p € (1, c0)
and g € L, it holds that

LU STty ar < Nl (1)
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where the constant N depends only on d, p.
Here we want to generalize this fact by proving

Theorem 1.1 Let H be a Hilbert space, p € [2,00), —o0 < a < b < o0,
g € Ly((a,b) x R, H). Then

[ et owh s ai < v [ [ g d(xl,g)

where the constant N depends only on d, p.

Remark 1.1 The Littlewood-Paley inequality (1.1) follows directly from
(1.2) if p > 2. Indeed, take a = 0,b = 2,¢(s,2) = g(x). Then the left-hand
side of (1.2) equals

2 1
J, / [/ [V Tog(t = s,) ()l ds' ! dt de
Rd
1
/ / / |VTsg(x |Hd5]1’/2dtdx>/ [/ |Vng(l‘)|12qd5]p/2dx.
R R JO

Thus, from (1.2) it follows that

/ / |[VTsg( )|Hd5]p/2dx<N/ o), de,
Rd

and a standard argument based on the self-similarity allows us to replace
the upper limit 1 by infinity keeping the same constant N.

This gives (1.1) for p > 2 and for Hilbert space valued g. It is a standard
fact that from the Hilbert-space version of (1.1) for p > 2 the same inequality
follows for p € (1,2) by duality.

It is also well known that having (1.1) proved for p € (1,2], the case
p € [2,00) can be treated by duality argument. In contrast with this “sym-
metry” we have

Remark 1.2 For p € (1,2) estimate (1.2) is not true even if d = 1, H =
R. Indeed, take a = 0, a finite b, ¢(z) = (27)" /2 exp(—=22/2), g(s,2) =
¢(x)e™?* where A > 0. Then

Vgl 2) = VE [ 00 VD) (@)

= V(0 ) 0 VI D) = Vi (4 1) VT ),

and as easy to see the limit as A goes to infinity of the product of the
left-hand side of (1.2) and /2 equals

b t 2 1

x L x?
; AT o g g de. (13
A11»1(30/1%/0[ /0 27(15_54_1)3@ e s] x (1.3)
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Furthermore for A > 1

t 2 /2 t
A 1 2
/ %e‘”seﬂ—sﬂx ds:/ —I-/
o 27m(t—s+1) 0 /2

2 t/2 2

< N e T / Xe 0 ds 4 e M N2 T < e e T
2P 0 2P

This allows us to evaluate the limit in (1.3) by using the dominated conver-

gence theorem. We see that the limit equals

b 2
z — L g%p/2
Y -k dt de,
S e s

which is finite and non zero.

Thus the left-hand side of (1.2) is of order A"P/2 At the same time the
right-hand side of (1.2) is of order A=*, and A7/ is much bigger than A~"
if pe(1,2) and A — oo.

Proof of Theorem 1.1. First note that by considering g(,)l(41)(t)
instead of g(t,#) we can reduce the general case to the one in which a =
—00,b = 00. Therefore, only this case we consider below. Next, for p = 2
the application of the Fourier transformation shows that the left-hand side
in (1.2) equals

[;[ZKMW*WH%@Q%wﬁ&:A;[:m&mg@%

what in its turn equals the right-hand side of (1.2). This proves (1.2) for
p = 2 and shows that if we introduce the operator P by the formula

t
Potte) = [VTiegls, )y o)
then P is a bounded (actually, isometric) operator from Ly(R*!, H) into
Ly(R¥™LR).

Due to the parabolic sharp inequality (||f|l, < N||f#]|,, see [B]) and
the Marcinkiewicz interpolation theorem the parabolic version of the Stam-
pacchia interpolation theorem is available, and we will prove our theo-
rem if we prove that P is a bounded operator from L., (R, H) into
BMO(R™! R). More precisely, it suffices to show that if |g(¢, z)|s# < 1 for
all (¢,z) € R*™! and g vanishes for |t| + || large enough, then for any set
Q = (to,to+r?) x {z : |z —xo| < 7} withtg € R, » > 0, zg € R there exist
a constant gg € R (depending on ¢, () and an absolute constant N such
that

/Q|Pg(t,a:)—gQ|2dtdx§ N|Q|. (1.4)

A shift of the origin shows that we can always take tp = 0,29 = 0in (1.4).
Furthermore, if we replace g(¢,z) by g(tr=% xr~!) then we see that without
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loss of generality we can take r = 1in (1.4). Thus, let ¢g = 0,29 =0, r = 1.
Also observe that for ¢ € (0,1)

Py(t,a) < [ / VT ag(s, ) () 2 ds] 2 + / VT, @)y )2

= Pig(t,z) + Pag(t, z).
On the other hand obviously Pig < Pg. It follows that for any constant gg
|Pg(t, x) — gol < [Prg(t,2) — gol + [Pag(t, @) (1.5)

Further, for s < ¢

-1

1 0
IVTizsg(s, )i = S A(Te-s(s, M) — o7 Ti-s9(s, M)
It follows that

13 1 13 a 13
[Tt frds = 58 [ Tt ds = 5 [ 10t ds
—1 -1 -1

+lg(t, )l

Using this and taking a function ¢ € C*°(R?) such that ((z) = 0 if
|z] > 2, ((x) = 1 if |2] < 1, we see that

/QIPzg(t,r)lzdtda::/Md/ol(/_t1 IVTi_sg(s, )(2)| ds) dt da

<[ s / 1 Vi (s, ()l ds) dt die =

| €ttt GAG) [ 15 ate, @)l ds) e

0 1
[ oot gt = [Tt @ ds) da.
R -1 -1
The last expression is obviously bounded by a constant independent of ¢

(recall that |g|g < 1).
Owing to (1.5) it remains only to find an appropriate gg such that

[ 1Pigte.) - gol? e de
Q

is bounded by a constant independent of g. Actually, it turns out that as
go one can take any particular value of Pig(t,z) in Q. Indeed, as we will
see first derivatives of Pig(t,x) are bounded on Q.
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Let us first estimate the derivatives with respect to x. By the Minkowski
inequality
-1

9 ﬂ 2 1/2
Pt 195 T (s @l sl

Here
62
8xi 7 t sg(S, )($)
- ! (' =y —y') 8 ey
o (QT(t—S))d/Z V/Rd[ (t_S)Z - t—S]e ( ) g(say) dy

It follows that

d , N 1 Loy’
— T . < T—s\T Y) 2 —
|val‘lﬂ g(Sa )(x)|H_ (t—S)Z{(t—S)d/z /Rde dy} (t—s)z’

and for ¢ > 0

[ / VLT @) ds)? < N / S

[ oz’ —00 (t - 5)2

-1
SM/ —Lwﬁﬂ:N

0o (_5)2

Thus, we get on @ the estimate of the gradient of Pyg(¢, x) with respect
to #. In like manner the first derivative of Pyg(t, ) with respect to ¢ can
be estimated, and the theorem is proved.

Remark 1.3 As explained in the introduction, in [K] we also need the
following version of (1.2):

/Rd /ab[ /: (L= )Y gs, ) () ds)?!? dt dae <

b
(14 0=y [ [ ot ol

To deduce this from (1.2) it suffices to observe that

(I=2)*Tysg = (I = A)Tos (1= A) VP = To_ Ry — %Tt_sﬂg,

where R = (I — A)~'/2?, P, = (8/02")R are bounded operators in L, for

any p € (1,00), and by the well-known estimate of norms of convolutions

/Rd /ab[/at | Te— s Ry(s, )(2)[3 ds]"’* dt due
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b t
g/ /[/ Ti_s Rlg(s, )| % (x) ds]P/? dt de <
R? Ja a

b—a b b
([ mm@ay [ ol = @-ap [l

2. Uniform localization theorem for spaces of Bessel potentials
Our aim here is to prove the following result.

Theorem 2.1 Let p € (1,00),n € (—00,00), § > 0 and let { € C*°,
k=1,23,... Assume that for any multi-inder o and x € R?

sup Z |D¢(x)] < M(a Z |Gk ()P > 6, (2.1)

reR?

where M (o) are some constants. Then there exists a constant N = N(d,n, M, )
such that for any f € H}!

WA < N DG o Do NGef ey < NI, (2:2)
k k

To prove the theorem we need a lemma in which we denote Ly = Al — A,
and for the Green’s function G(#) of the operator (I — AY™, m >0, A >0
and multi-indices 8 such that || < 2m — 1 we define

Gap(2) 1= AA=IPD2 DA G (e N)] = A2 [DPGY(V/N).

Observe that [|Gag|dz is finite and independent of A since |3 < 2m —
1. Also observe that the Green’s function of L}, m > 0, is given by

A 2=mGx/N).

Lemma 2.1 Let m € {0,1,2,..}, A > 1, and ¢ € (0,1/2). Let g, € C*,
k=1,2,3,.... Assume that for any multi-indezr o

sup Z|Dank )| < M(«).
reR?

Then (i) there exist constants o such that for any f € Cg°

LRl =mlff+ Y AP ) (Gong * L), (2:3)
0<lal<2m-18|

YLy ™ 1 =mef + D A ID O (Gang + 1), (24)

0<]ar|<2m—|B]

LMLy fl=mf+ Y AP G0s « (D) f],  (2.5)
0<|a|<2m~1p|
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L mef ] =me L3+ Y e ARG (D) L3 £,
0< o <2m~|6]
(2.6)
(ii) there exists a constant N = N(p,d, m,e, M) such that for any f € C§°
we have
S NEE LA e ] = me LS P < NN (2)
k

Proof. (i) By the Leibnitz rule for certain constants Cop We have

Ll =mIRf+ > AUt e[ Doy 1pf f =
0<|a|<2m—| 8]

LS f+ Y enp AU IDe g DA LI LY £,
0<]al<2m—|g|
and this gives us (2.3). This equation is true not only for f € C§° but also
for f € Hgm. Therefore we can replace f by L7™ f in (2.3). This gives

us (2.4). Taking conjugate operators to those participating in (2.3) we get
(2.5). Equation (2.6) is obtained from (2.5) by substitution of L7™ f instead

of f.
(ii) According to [KP] for a constant e,

. o dt
,\fICa/O (e ’\t/ZTt—I)ftlﬁ,

(&) = el -mIi ) = e [ NPT - TS (0) s =

0

oo dt
Cg/o T ¢<%>[nk<x+y>—nk@)]f(“y)dym’

where ¢(x) = (2m)~%? exp(—|z|?/2). Hence by the Hélder (or by the Min-
kowski) inequality |Ij;| < I3 Top where

_ dt
Lig( —ca{/ ’\t/z/ (== |77k v+ y) — ()| ym}l e

- dt
) = ([ [ s k- n @Il dy )
Since >, |ne(z + y) — np(z )| § Ny|, we have

/ (== |77k r+y) — ()| dy < N/ ly|( %)dy— N2

Ly < NAE-1/20-1/p) /\(1/2—6)(17—1)Z||[k||£ < NZH[%Hg =
k k
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_ dtdydx
v e [ uk P te )= D+ 9 i <

RS oy ag— 1 fie = N2 g
Vet | e G g U = XAl

This gives us (2.7) for m = 0. In the general case when m is even we
apply (2.3), (2.6) and the fact that the operators Ly and f — Gmap * f
commute. For instance, by (2.6)

LTS e f] — e L5 Y = LS(LY ™ I LY g]) — L™ Ik L3 (L3 g)] =

Lilmegl-mLsg+ Y, A2 { IS (D" nk)g)— (D mik) L9}
0<|a|<2m~1p|

where ¢ = L7™f. After this one can apply (2.7) with m = 0 along with

the Minkowski inequality (to estimate the norm of Gpap * h through the
norm of h), and then one gets (2.7) for the sign + and for even m. The
inequality with — is proved similarly on the basis of (2.3).

To consider the remaining possibility of odd m, we notice that as is well
known for any n

d
n n—1/2 n—1/2
LA Fllp ~ LY 2 Al + ST folly

i=1

L2 F )l < A2 LR £ (2.8)

Hence

STNLT LA e 1= L5 S < NS LT LS e Sl = LS FH B+
k k

NS TNEE™ P2 LS I Lo — (e LS P YIE < NAPEYD) L2702 gy

ki

+m/2-1/2 e €
NS TNEE LS I for] — e LS S
ki

+m/2— e
NS TNEE™ LS [ £) = s LS FHIE,
ki

and (2.7) follows. The lemma is proved.

Proof of Theorem 2.1. It suffices to consider only f € C§° and since
[|1L7"(I — A)*|| < oo for any n € (—o0,00), where the operator norm is
taken in L,, we only need to show that for a A = A(d, n, M, 6) > 1

||L§f||§NZ||L"ckf|| leL”ckf||p<N||Lf||,€. (2.9)
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We consider three cases of possible values of n.
First case: |n] €4{0,1,2,...}. If n = —m < 0, we notice that

ST TG (DG L I <

0<]ar|<2m—|B]

NATE S S |G (DG L I <

0<]a|<2m—|B] &
NATPEY T DG L™ Al < NATPEILT™ I

|a]<2m k&
Hence by (2.6) and the Minkowski inequality for an appropriate N, A

(1= NATP)||LR e < 6™ 1ZIIQL "l = NATPR LT <

NZIIL oAU < (N + NATP2)| L™ £,

which yields (2.9).

If n = m > 0, it suffices to repeat the above argument using (2.3) instead
of (2.6).
Second case: 2|n| € {1,2,3,...}. Here we again use (2.8). Then from the
first case we get

|3 f||p<NZ|IL" VRGNS G £ I

ki

NZHL” G AN S E TP (G e BN S TEY PG FIIE <

ki ki

N NERGANE + NATPP LR,
k

which for large A gives the first inequality in (2.9). In like manner the second
one 1s proved.

Third case: n = m—+¢e, 2lm| € {0,1,2,3, ...}, € (0,1/2). To prove (2.9) in
this situation it suffices to notice that by (2.7) and by the second case

LA = HEXTES AN < NZ LR TG LS AU < N Y IER LS (G DI+
k

NAPEVD LR F|E = NS LG NIE + NAPETYD| LT fl|p <
k

NZIIL” G+ NP2 LR 2,
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D ILRCNIE =D IR LA G <
k k

N LTI LS AL + NATP2| L FIE < NI LR FIE.
k

The theorem is proved.

Remark 2.1 In the proof of the second inequality in (2.2) we did not use
the second condition in (2.1). Therefore, under the conditions of Lemma 2.1
alone the operator f — {Lynp L7"f : k =1,2,3,...} is a bounded operator
from L, into Lp(Rd, lp). Tts conjugate is also bounded, which means that
under the conditions of Lemma 2.1 for any n € (—oc0, x0), ¢ € (1,00) there
is a constant N = N(n,p,d, M) such that for any sequence of functions
g € Ly satisfying > ||gx]]§ < oo we have

1D megelli g <N llgxlld (2.10)
k k

Interestingly enough, this shows that, actually, the first inequality in (2.2)
follows from the second one. To see this it suffices to take in (2.10) np =

(D2 ¢F) " and gy = G f.
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