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H. Salehi and A.V. Skorokhod 41u�(0; x) = f(x), @@tu�(t; x)jt=0 = g(x), u�(t; x)jx2� = 0; (1.2)where G � Rd is a bounded region with a smooth boundary �:We suppose y(t) is an ergodic process with the ergodic distribution�(dy). Let �a > 0 be de�ned by�a2 = R a2(y)�(dy): (1.3)Then it follows from [5] that u�(t; x) converges in an appropriate metric tothe solution of the averaged equation@2�u(t; x)@t2 = �a2��u(t; x) (1.4)with the same initial and boundary conditions (1.2).It is well-known that the solution to (1.4) has the form�u(t; x) = 1Xn=1 rn n(x) cos(�ap�nt+ 'n); (1.5)where the functions  n(x) are determined by the eigenvalue system� n(x) + �n n(x) = 0,  n(x) = 0, x 2 �;RG n(x) m(x)dx = 0, n 6= m and RG  2n(x)dx = 1;0 < �1 < �2 < : : : 9=; (1.6)The constants rn and 'n are determined by the initial functions f andg as follows: Let An = RG n(x)f(x)dx, �ap�nBn = RG  n(x)g(x)dx.Let 1Pn=1(jAnj + jBnj) < 1. Then rn = (A2n + B2n)1=2, rn cos 'n = An,rn sin'n = �Bn:In this paper we present an asymptotic representation for u�( t� ; x), as� ! 0. We use the notions of weak convergence and asymptotic coin-cidence of distributions. Let us recall these concepts here. Let V�(t; x),V0(t; x), V̂�(t; x) be random �elds. V�(t; x) converges weakly to V0(t; x) ifE�(V�(t1; x1); : : : ; V�(tn; xn))! E�(V0(t1; x1); : : : ; V0(tn; xn)) and the dis-tributions of V�(t; x) and V̂�(t; x) coincide asymptotically ifEf�(V�(t1; x1); :::; V�(tn; xn)� �(V̂�(t1; x1); ::; V̂�(tn; xn)g ! 0as �! 0 for all bounded continuous function � : Rn ! R and t1; : : : ; tn 2R+; x1; : : : ; xn 2 Rd:Let us make some historical remark relevent to this work. The problemsconsidered here are special cases of a general problem of investigation ofdynamic systems under the inuence of random perturbations. The studyof these problems began by N.M. Krylov and N.N. Bogolubov in the 1930sin connection with some problems of mathematical physics. The work wasextended by a student of N.N. Bogolubov, namely I.I. Gikhman, who forthese purposes laid down the foundation of the theory of stochastic dif-



42 On Asymptotic Behavior of Solutions of the Wave Equationsferential equations in 1940s. Major contribution in the development ofasymptotic methods in investigation of randomly perturbed dynamical sys-tems was made by R. Khasminskii in his well known monograph (1969). G.Papanicolaou, D. Stroock and S. Varadhan (1977) proposed a very generalmartingale method for studying the asymptotic behavior of continuous andjump dynamical systems, in particular they found a di�usion approximationfor such systems for large time. We consider here randomly perturbed waveequations, where the corresponding dynamical system is of in�nite dimen-sion. In�nite dimensional dynamical systems under various assumptionswere studied by G. Papanicolaou and S. Varadhan (1973), G. Papanicolaou(1978). We note that the problems under consideration are closely con-nected with some problems of stochastic P.D.E. which were developed byN.V. Krylov and B.L. Rozovskii (1977), (1979), (1982), E. Pardoux (1977),B.L. Rozovskii (1985). Randomly perturbed PDE's were considered by R.Figare, E. Orlandi and G. Papanicolaou (1982); R. Khasminskii, F. Hop-pensteadt, H. Salehi (1994); F. Hoppensteadt, H. Salehi, A. Skorokhod(1994).The main results of this paper which consists of two theorems and sev-eral corollaries are stated in Section 2; their proofs are provided in Section 3.In Section 4 applications to vibration of string and membrain are discussed.2 ResultsThis section consists of three parts. In part 1 our assumption arestated. Part 2 covers some auxilary materials and part 3 is devoted to thestatements of the main results.2.1 Assumptions(2.1) We assume that the process y(t) has some regularity properties.Let Var(m1 �m2) denote the variation of the di�erence of two measures.We assume supy�Y R10 Var(P (t; y; �)� �(�))dt <1: (A1)This condition implies the asymptotic normality, as T !1, of the integralsTR0 f(y(t))dt for every bounded measurable function f:(2.2) Other assumptions are concerned with the region G and the initialfunctions f(x) and g(x). Let  k(x) and �k satisfy the relations� k(x) + �k k(x) = 0 in G;  k(x)jx2� = 0, RG  2k(x)dx = 1:We suppose that



H. Salehi and A.V. Skorokhod 431) f k(x)g is an orthogonal basis in L2(G)2) supk;x2G j k(x)j <1;  k(x) are continuous3) P��1k <14) f(x) = 1Pn=1 An n(x); g(x) = 1Pn=1 Bn n(x) 9>>>>>>>>>>>=>>>>>>>>>>>; (A2)and these series are uniformly convergent.2.2 Auxiliary ResultsThe proofs of our main results are based on some general asymptotictheorems for randomly perturbed ordinary di�erential equations with al-most periodic coe�cients.Let x�(t) be the solution of the equationdx�(t)dt = a(t; x�(t), y( t� )), x�(0) = x0 (2.3)where a(t; x; y) : R+ � Rd � Y ! Rd:We assume the existence of the derivatives a0x(t; x; y) and a00xx(t; x; y) andthat the function a(t; x; y), a0x(t; x; y), a00xx(t; x; y) are bounded measurablein y and continuous in t; x uniformly with respect to y. Besides we supposeR a(t; x; y)�(dy) = 0:Suppose that the transition probability P (t; y; C) of the process y(t)satis�es Assumption (A1). LetR(y; C)= R10 (P (t; y; C)� �(C))dt;Gt'(x)= R R � @@x ('0(x); a(t; x; y0)); a(t; x; y)��(dy)R(y; dy0): 9>>=>>; (2.4)Theorem 2.1. Let for any ' in C(2)(Rd) the limitĜ'(x) = lim(1=2T ) R t+Tt�T Gu'(x)du, (2.5)exist as T !1 uniformly in t > T:Then the process ~x�(t) = x�( t� ) converges weakly to a di�usion process x̂(t)with the generator Ĝ and the initial value x̂(0) = x0:2.3 Main ResultsUsing the Fourier method we obtain the following representation forthe solution of the stochastically perturbed equation (1.1):



44 On Asymptotic Behavior of Solutions of the Wave Equationsu�(t; x) =P rk k(x) expfp�k R t0 K(y s� )) sin 2�ak(�k(�; s) + s)dsg� cos �ak(�k(�; t) + t); (2.6)where �ak = p�k�a, and �k's are the solutions of the di�erential equationsd�k(�; t)dt = p�kK(y( t�))(1 + cos 2�ak(�k(�; t)), �k(�; 0) = 'k: (2.7)The coe�cients rk's and 'k's are determined by the initial functions f(x)and g(x), and the kernel K(y) = (a2(y) � �a2)=2�a:For the asymptotic behavior of the summands in (2.6), we introduce therandom functionsZ0(�; t) = R t0 K(y( s� ))ds;Zk(�; t) = R t0 K(y( s� ))(cos 2�ak�k(�; s) + s)ds; k = 1; 2; : : :Vk(�; t) = R t0 K(y( s� )) sin 2�ak(�k(�; s) + s)ds; k = 1; 2; : : :Theorem 2.2 Let the transition probability P (t; y; C) of the process y(t)satisfy Assumption (A1). Then for all m, the functions(Z0(�; t� ), Z1(�; t� ); : : : ; Zm(�; t� ), V1(�; t�); : : : ; Vm(�; t� ))converges weakly, as �! 0, to the system of real-valued independent Wienerprocesses (Z0(t), Z1(t); : : : ; Zm(t); V1(t); : : : ; Vm(t))for which EZk(t) = EVk(t) = 0 andEZ20 (t) = 2ct, EZ2k(t) = EV 2k (t) = ct,c = R10 R R K(y)K(y0)(P (t; y; dy0)� �(dy0))�(dy)dt:Corollary 2.1. Let Assumption (A2) be satis�ed, and letX rke�kt <1 for all t > 0:Then the distributions of u�( t� ; x) coincide asymptotically with the distribu-tions of the random �eldû�(t; x) = 1Xk=1 rk k(x)ep�kVk(t) cos[�ak( t� + Z0(t) +p�kZk(t)) + 'k]:By equation (1.5), the solution to the averaged equation (1.4) is givenby the formula �u(t; x) = 1Xn=1 rn n(x) cos(�ap�nt + 'n): (*)



H. Salehi and A.V. Skorokhod 45By Corollary 2.1, the distributions of u�(t=�; x), u�(t; x) being the solutionof equations (1.1)-(1.2), coincide asymptotically with the distributions ofthe random �eld û�(�t; x) given byû�(�t; x) = 1Xn=1 rn(�t) n(x) cos(�ap�nt+ 'n(�t)); (**)where rn(t) = rn expfp�nVn(t)g;'n(t) = 'n + �ap�nfZ0(t) +p�nZn(t)g:We therefore obtain:Corollary 2.2. Formulas (*) and (**) have the same form, but in formula(**) the amplitudes and the phases of eigenoscillations rn(�t) and 'n(�t)are random and slowly change with the change of t:Corollary 2.3. If t changes in a bounded interval then the expressions inthe right hand sides of (*) and (**) coinside asymptotically, since rn(�t)!rn and 'n(�t)! 'n, as �! 0:Note that the joint distribution of the processesZ0(�t); : : : ; Zm(�t); : : : ; V1(�t); : : : ; Vm(�t); : : :coincides with the joint distribution of the processesp�Z0(t); : : : ;p�Zm(t); : : : ;p�V1(t); : : : ;p�Vm(t); : : :Therefore we have:Corollary 2.4. The distributions of the random function û�(�t; x) in (**)coincides with the distributions of the random functionu�� (t; x) =P1n=1 rn expfp�p�nVn(t)g n(x) cosf�ap�nt+ 'n +p�('n(t) � 'n)g .It is easy to see that as �! 0 we have1p� (u�� (t; x)� �u(t; x))! û0(t; x);where bu0(t; x) is given bybu0(t; x) =P1n=1 rn n(x)fp�nVn(t) cos(�ap�nt+'n)�('n(t)�'n) sin(�ap�nt+'n)g:Thus:



46 On Asymptotic Behavior of Solutions of the Wave EquationsCorollary 2.5: 1p� (u�(t; x)� �u(t; x)) converges weakly to û0(t; x):3 ProofsWe proceed to make some transformations of the problem. Let k(x) and �k be determined by the relation (1.6).Let �n(�; t) = RG u�(t; x) n(x)dx, n = 1; 2; : : : (3.1)Then �n(�; t) is the solution of the ordinary di�erential equationd2dt2�n(�; t) + �na2(y( t�))�n(�; t) = 0 (3.2)with the initial conditions�n(�; 0) = �0n = RG f(x) n(x)dx;ddt�n(�; t)jt=0 = �1n = RG g(x) n(x)dx: 9>=>; (3.3)We introduce new variables rn(�; t) and 'n(�; t) which are related to �n(�; t)by the relations �n(�; t) = rn(�; t) cos �an'n(�; t) (3.4)ddt�n(�; t) = ��anrn(�; t) sin �an'n(�; t); (3.5)where �an = p�n�a:Lemma 3.1. 'n(�; t) is the solution of the equationd'n(�; t)dt = 1 +K(y( t� ))(1 + cos 2�an'n(�; t)) (3.6)with the initial condition 'n(�; 0) = 'n andrn(�; t) = rn expf�an R t0 K(y( s� )) sin(2�an'n(�; s))ds; (3.7)where K(y) = a2(y) � �a22�a2 ; and (3.8)�0n = rn cos �an'n, �1n = rn sin �an'n: (3.9)Proof. We consider the derivatives of the right hand sides of the relations(3.4) and (3.5) and the relation (3.2). We can obtain the equalities:



H. Salehi and A.V. Skorokhod 47ddtrn(�; t) cos(�an'n(�; t))� �anrn(�; t) ddt'n(�; t) sin(�an'n(�; t))= ��anrn(�; t) sin(�an'n(�; t)), and��an ddtrn(�; t) sin(�an'n(�; t))� �a2nrn(�; t) ddt'n(�; t) cos(�an'n(�; t)= ��na2(y( t� ))rn(�; t) cos(�an'n(�; t)):These relations imply the validity of the system of the �rst order equations:�a2nd'n(�; t)dt = �na2(y( t� )) cos2(�an'n(�; t)) + �a2n sin2(�an'n(�; t)); (3.10)�an ddtrn(�; t) = (3.11)(�na2(y( t� ))� �a2n)rn(�; t) sin(�an'n(�; t)) cos(�an'n(�; t)):(3.6) follows from (3.10); (3.11) is a linear equation with respect to rn(�; t)and (3.7) is the representation of its solution; (3.9) follows from (3.4) and(3.5).We introduce the additional variables:Z0(�; t) = R t0 K(y( s� ))ds; (3.12)Zn(�; t) = R t0 K(y( s� )) cos 2�an(s + �n(�; s))ds; n = 1; 2; ::: (3.13)Vn(�; t) = R t0 K(y( s� )) sin 2�an(s + �n(�; s))ds; n = 1; 2; ::: (3.14)�n(�; t) = 'n(�; t)� t; n = 1; 2; ::: (3.15)Then we have'n(�; t) = t+ Z0(�; t) + Zn(�; t) + 'n, (3.16)rn(�; t) = rn expf�anVn(�; t)g: (3.17)Lemma 3.2. Let condition (A2) be ful�lled and P rn < 1. Then thefunction u�(t; x) may be represented in the formu�(t; x) = (3.18)1Xn=1 rn n(x) expf�anVn(�; t)g cos �an('n + t+ Z0(�; t) + Zn(�; t)):



48 On Asymptotic Behavior of Solutions of the Wave EquationsProof. Suppose the series in the right hand side of (3.18) is absolutely anduniformly convergent and denote its sum by u�(t; x). Then R u�(t; x) n(x)dx= R u�(t; x) n(x)ds, therefore u�(t; x) = u�(t; x). Note that y(t) is a stepfunction and for �xed � > 0 and T > 0 we can divide the interval [0; T ] intoa �nite number of intervals on which y(t) is a constant. It is easy to checkthat �anVn(�; t) is bounded in n and t when y(t) is constant.Let n be �xed. We consider the R3n+1-valued functionZ(n)(�; t) = (3.19)(Z0(�; t); :::; Zn(�; t); V1(�; t); :::; Vn(�; t); �1(�; t); :::; �n(�; t)):This function satis�es the equationddtZ(n)(�; t) = K(y( t� ))�(n)(t; Z(n)(�; t)) (3.20)where the coordinates of �(n)(t; x) : R+ � R3n+1 ! R3n+1 are determinedby the relations'0(t; z0; : : : ; zn; v1; : : : ; vn; �1; : : : ; �n) = 1'i(; z0; : : : ; zn; v1; : : : ; vn; �1; : : : ; �n) = cos 2�ai(t+ �i), 1 � i � n;'n+i(t; z0; : : : ; �n) = sin 2�ai(t + �i), 1 � i � n;'2n+i(t; z0; : : : ; �n) = 1 + cos 2�ai(t+ �i), 1 � i � n;here�(n)(t; z) = ('0(t; z0; : : : ; �n); : : : ; '3n(t; z0; : : : ; �n));z = (z0; : : : ; zn; v1; : : : ; vn; �1; : : : ; �n):Investigation of asymptotic behavior of the solution to equation (3.20)will be based on some general statements regarding the weak convergenceof stochastic processes to a di�usion process.We consider a family of stochastic processes fx�(t), � � 0g with valuesin Rd which are de�ned on R+ and a di�usion process x(t) with values inRd with a generator G which is determined on the functions f 2 C2(Rd)by the formulaGf(x) = (a(x); f 0(x)) + 12 tr f 00(x)B(x): (3.21)Here (�; �) is the scalar product in Rd, a(x) is a smooth Rd-valued functionon Rd, B(x) is a L(Rd)-valued smooth function on Rd, f 0(x) and f 00(x)are the derivatives of f(x); f 0(x) is a Rd-valued function and f 00(x) is afunction with values in L(Rd); for A in L(Rd) trA denotes the trace of A.Suppose that the process x�(t) is adapted to a �ltration fF�tg:



H. Salehi and A.V. Skorokhod 49Proposition 3.1. Let x�(0) = x0 for all � > 0, and let for all f 2 C3(Rd)and 0 < t1 < t2 <1lim�!0EjEff(x�(t2)) � f(x�(t1))� R t2t1 Gf(x�(s))ds =F�t1gj = 0: (3.22)Then x�(t) converges weakly to x(t), as �! 0. (see [15], p: 77).We will apply this proposition to prove Theorem 2.1.Proof of Theorem 2.1. Denote by (F�t ) the �ltration which correspondsto the process y( t� ):1) Let g(t; x; y) : R+�Rd�Y ! R be a bounded function measurable iny and continuous in t; x for which the derivatives g0x(t; x; y) and g00xx(t; x; y)satisfy the same conditions. Then for 0 < t1 < t2EfR t2t1 g(t; x�(t); y( t� )(t))dt=F�t1g (3.23)= EfR t2t1 R g(t; x�(t); y)�(dy)dt + � R t2t1 Rg0x(t; x�(t))dt=F�t1g+O(�) + (t2 � t1)o(�);where Rg0x(t; x) = R R (g0x(t; x; y0); a(t; x; y))�(dy)R(y; dy0): (3.24)Let R(t; y; C) = P (t; y; C)� �(C), �g(t; x; y) = g(t; x; y) � R g(t; x; y0)�(dy0):Then formula (3.23) follows from relations:(a) EfR t2t1 �g(t; x�(t); y( t� ))dt=F�t1g= EfR t2t1 �g(t; x�(t1); y( t�))dt+ R t2t1 R tt1(�g0x(t; x�(s); y( t� )), a(s; x�(s); y( s� )))dsdt=F�t1g= �EfR t2�t1�0 R �g(t1 + �u; x�(t1)y0)R(u; y( t1� ); dy0)du+ R t2t1 R t�t1�0 R (�g0x(s+ �u; x�(s); y0), a(s; x�(s); y( s� ))�R(u; y( s� ); dy0)duds=F�t1g= �EfR t2t1 R (g0x(s + �u; x�(s); y0), a(s; x�(s); y( s� ))R(y( s� ); dy0)ds=F�t1)+O(�) + (t2 � t1)o(�):(b) EfR t2t1 g(t; x�(t); y( t� ))dt=F�t1g= EfR t2t1 R g(t; x�(t); y)�(dy)dt =F�t1g+O(�)(1 + (t2 � t1)):2) Let f(t; x) : R+ � Rd ! R be a bounded continuous function with



50 On Asymptotic Behavior of Solutions of the Wave Equationsbounded continuous derivatives f 0x(t; x), f 0x0x(t; x). Let ST f(t; x) =(1=2T ) R t+Tt�T f(s; x)ds, t� T � 0:Then for T � t1 < t2,EfR t2t1 f(t; x�(t))dt� R t2t1 ST f(t; x�(t))dt=F�t1g = (3.25)O(�(T + 1)(t2 � t1)) + O(T ):This follows from representing the left hand side of (3.25) in the formEf 12T R t2�Tt1+T R t+Tt�T (f(t; x�(t))� f(t; x�(s)))dsdt=F�t1g+ O(T )= Ef 12T R t2�Tt1+T R t+Tt�T R ts (f 0x(t; x�(u)), a(u; x�(u); y(u� ))dudsdt=F�t1g+O(T )= O(�T (t2 � t1)) + O(�(t2 � t1)) +O(T );where we have applied relation (3.23) to the integral R ts ( ) du.Let '�C(3)(Rd). ThenEf'(x�( t2� )) � '(x�( t1� ))=F�t1=�g= EfR t2=�t1=�('0(x�(s)), a(s; x�(s); y( s� )))ds=F�t1=�g= � EfR t2=�t1=�Gs'(x�(s))ds=F�t1=�g+O(�) + (t2 � t1) o(�)�= � EfR t2=�t1=�STGs'(x�(s))ds=F�t1=�g+O(�) + (t2 � t1) o(�)� + O(�2(T + 1) t2�t1� +O(�T )= EfR t2t1Ĝ'(~x�(s))ds=F�t1=�g+ (t2 � t1)O(kĜ'� STGs'k)+O(�T ) + (t2 � t1)( o(�)� +O(�T ) + O(�));where we have used (3.23) in asserting the second equality and (3.25) inthe veri�cation of the third equality.Let � ! 0 and T !1 such that �T ! 0. Then we can apply Proposition3.1 to complete the proof.Remark 3.1. Using the relation (('0; a); a) = ('00a; a) + ('0; a0a), theoperator Gtf(x) may be rewritten in the form:Gtf(x) = (~a(t; x), f 0(x)) + 12 tr ~B(t; x)f 00(x) (3.26)where ~a(t; x) = R R a0x(t; x; y0)a(t; x; y)�(dy)R(y; dy0) (3.27)is a Rd-valued function and ~B(t; x) is a L(Rd)-valued function for which



H. Salehi and A.V. Skorokhod 51( ~B(t; x)z1; z2) = 2 R R (a(t; x; y); z1)(a(t; x; y0); z2)�(dy)R(y; dy0): (3.28)Therefore R Ĝf(x) = (â(x); f 0(x)) + 12tr B̂(x);where â(x) = limT!0ST ~a(t; x), B̂(x) = limT!1ST ~B(t; x); (3.30)and the existence of these limits is the main condition of the theorem.We now present the proofs of Theorem 2.2 and Corollary 2.1. Proofs ofCorollaries 2.2 | 2.5 were indicated at their enunications.Proof of Theorem 2.2. the proof is based on an application of Theorem2.1 to equation (3.20). In this case d = 3n+1 and the elements of the matrix~B(t; z), which we denote by ~bij(t; z), are determined by the equalities:~bij(t; z) = 2c'i(t; z)'j(t; z)(here z = (z0; : : : ; zn, v1; : : : ; vn, �1; : : : ; �n)) and elements b̂ij(z) of the ma-trix B̂(z) are determined by equalities b̂ij(z) = 2c limT!1 STf2'i(t; z)'j(t; z)g.Therefore b̂ij(z) = 8<: 0 if 0 � i 6= j � 2;2c if i = 0; j = 0;c if 1 � i = j � 2n:The elements (coordinates) of the vector ~a(t; z) = (~a0(t; z); :::; a3n(t; z))are determined by the relations~ai(t; z) = cf( nXk=0 @@zk'i(t; z)'k(t; z) + nXk=1 @@vk'i(t; z)'k+n(t; z)+ nXk=1 @@�k 'i(t; z)'k+2n(t; z))g:We can see that̂ai(z) = limT!1STf~ai(t; z)g = 0, 0 � i < 3n:We note that �k(�; t) = Z0(�; t) + Zk(�; t), 1 � k � n. Thus the equa-tion (3.20) satis�es the conditions of Theorem 2.1, and hence the process(Z0(�; t� ); : : : ; Zn(�; t�), V1(�; t� ); : : : ; Vn(�; t�)) converges weakly to the di�u-sion process (Ẑ0(t); : : : ; Ẑ1(t), V̂1(t); : : : ; V̂n(t)) whose drift term is zero andwhose di�usion matrix is diagonal with the most left top corner diagonalterm being 2c and the remaining diagonal elements are c.



52 On Asymptotic Behavior of Solutions of the Wave EquationsProof of the Corollary 1. It is easy to see that the statement of Corollary2.1 follows from formula (3.18) and Theorem 2.2 if the series in the righthand side of (3.18) converges uniformly in � for � small enough. As  n(x) arebounded so the convergence needed becomes a consequence of the followinglemma.Lemma 3.3. We haveE expf�anVn(�; t)g � b1 expf��a2nb2tg; (3.31)where bi > 0, 1 � i � 2, are constants.Proof. Let Hn(�; t) = expf�anVn(�; t)g. ThenHn(�; t) = 1 + �an R t0 K(y( s� )) cos 2�an(s + �n(�; s))ds++�a2n R R0<u<s<tHn(�; u)K(y(u� ))K(y( s� )) cos 2�an cos 2�an(�n(�; s)+s)duds.Using formula (3.23) we can obtain the inequalityEHn(�; t) � 1 +O(�t) + �b2 R t0 EHn(�; s)dsfor some b2 > 0. This implies (3.31).4 Some ApplicationsHere we present asyptotic formulas for solutions of stochasticallyperturbed wave equations for vibration of a string and vibration of a circularmembrane.a) Vibration of a string. Non-stochastically perturbed equation forfree vibration of a string is given by@2u(t; x)@t2 = a2 @2u(t; x)@x2 , (4.1)where the solution u(t; x) is subject to:u(t; 0) = u(t; 1) = 0, boundary conditions, (4.2)u(0; x) = f(x), @u(0; x)@t = g(x), initial conditions. (4.3)The Fourier method allows us to write the solution in the formu(t; x) = 1Xk=1 rk sin(k�x) cos(ak�t + 'k); (4.4)where rk and 'k are determined by the initial conditions:



H. Salehi and A.V. Skorokhod 53rk cos'k = 2 R 10 sin(k�x)f(x)dx;(a�k) rk sin'k = �2 R 10 sin(k�x)g(x)dx 9=; (4.5)rk's and 'k's are called the amplitudes and the phases of the eigenoscilla-tions of the string respectively, k = 1; 2; : : :We now consider the stochastic version of the wave equation, namely@2� (t; x)@t2 = a2(y( t�))@2u�(t; x)@t2 (4.6)with the same boundary and initial conditions (4.2) and (4.3). The Markovprocess y(t) is the same as before. Let rk's satisfy the condition1Xk=1 rke(�k)2t <1 for all t > 0: (4.7)Then the distributions of the random �eld u�( t� ; x) coincides asymptoticallywith the distributions of the random �eldû�(t; x) = (4.8)1Xk=1 rkek�Vk(t) sin(k�x) cos[ak( t� + Z0(t) + k�Zk(t)) + 'k]where ak = �ak�; V1(t), V2(t); : : : ; Z0(t); Z1(t); : : : are independent Wienerprocesses with mean zero and EZ0(t) = 2ct and EV 2k (t) = EZ2k(t) = ct,k = 1; 2; : : :, where c is as in Theorem 2.2.b) Vibration of a circular membrane. The unperturbed equation inthis case is of the form@2u(t; x; y)@t2 = a2�u(t; x; y); (x; y) 2 G;G = f(x; y) : x2 + y2 < 1g;� = f(x; y) : x2 + y2 = 1g: (4.9)The boundary condition is: u(t; x; y) = 0, (x; y) 2 �; (4.10)and the initial conditions areu(0; x; y) = f(x; y), @@tu(0; x; y) = g(x; y): (4.11)The solution of (4.9) subject to (4.10) and (4.11) may be represented in theform



54 On Asymptotic Behavior of Solutions of the Wave Equationsu(t; r; �) = 1Xn=0 1Xm=1frn;m n;m(r; �) cos(a�n;mt+ 'n;m)+r�n;m �n;m(r; �) cos(a�n;mt+ '�n;m)g; (4.12)here  n;m(r; �) = Jn(�n;mr) cosn�,  �n;m(r; �) = Jn(�n;mr) sinn�; Jn is theBessel function of the �rst kind of order n, �n;m is the mth positive zeroof the function Jn; rn;m, r�n;m, 'n;m, '�n;m are determined by the initialconditions; r; � are the polar coordinates of the point (x; y).Let u�(t; x; y) be the solution of the stochastically perturbed equation(4.9) in which a2 is replaced by a2(y( t� )) with the same boundary andinitials conditions (4.10) and (4.11). Then under the condition1Xn=0 1Xm=1 rn;me�2n;mt <1 for all t > 0;the distributions of the random �eld u�( t� ; x; y) coinsides asymptoticallywith the distributions of the random �eldbu�(t; x; y) = 1Pn=0 1Pm=1 frn;m n;m(r; �) exp(�n;mVn;m(t))� cos[a�n;m( t� + Z0(t) + �n;mZn;m(t)) + 'n;m] (4.13)+r�n;m �n;m(r; �) exp(�n;mVn;m(t))� cos[a�n;m( t� + Z0(t) + �n;mZ�n;m(t)) + '�n;m]g;where rn;m, r�n;m, 'n;m, '�n;m are the same as in formula (4.12), and Z0(t),Vn;m(t), Zn;m(t), Z�n;m(t) for n � 0 and m � 1 are independent Wienerprocesses with mean zero and EZ20 (t) = 2ct and EV 2n;m(t) = EZ2n;m(t) =EfZ�n;m(t)g2 = ct, n � 0, m � 1:Remark 4.1. Note thatE(rnen�Vn(t)) = rnen2�2� t=2 .Suppose that there exists a number T for whichsupn rnen2t <1 for t < T and supn rnen2t = +1 for t > T:Then the series (4.8) converges for t < 2T�2� and diverges for t > 2Tn2� .Let us consider the eigenoscillation of the formu(n)(t; x) = expfn�Vn(�t)g cosfan�t+ Z0(�t) + n�Zn(�t)g sin(n�x):Then its amplitude



H. Salehi and A.V. Skorokhod 55expfn�Vn(�t)gis unbounded in probability as n ! 1. Thus random perturbations im-ply unbounded growth in the amplitudes of the eigenoscillations with highfrequences. The condition supn rnen2t <1prevents the break down of the string in presence of random perturbutions.Similar conclusions can be reached regarding the vibration of a mem-brane. References[1] N.N. Bogolubov and N.M. Krylov, On Fokker-Plank equations that arederived in the theory of perturbations by a method which is based onproperties of the perturbation Hamiltonian, Contribution of Kathedraof Mathematical Physics, Kiev Univ. 4 (1939) 5-158.[2] R. Figari, E. Orlandi and G. Papanicolaou, Mean �eld and Gaussianapproximation for partial di�erential equations with random coe�-cients, SIAM J. Appl. Math. 42 (1982) 1069-1077.[3] J.J. Gikhman, To the theory of di�erential equations of stochasticprocesses, Ukrainian Math. J. 2 (1950)37-63; 3 (1951) 317-339.[4] F.C. Hoppensteadt, R.Z. Khasminskii and H. Salehi, Asymptotic solu-tions of linear partial di�erential equations of �rst order having randomcoe�cients, Random Operators and Stochastic Equations (to appear).[5] F.C. Hoppensteadt, H. Salehi and A.V. Skorokhod, An averaging prin-ciple for dynamical systems in Hilbert space with Markov random per-turbations (to appear).[6] R.Z. Hasminskii, Stochastic stability of di�erential equations, Alphenaan den Rijn, 1980, Netherland.[7] N.V. Krylov and B.L. Rozovskii, On Cauchy problem for linearstochastic partial di�erential equations, Izv. Ac. Sci. USSR 41, N. 6(1977) 1329-1347.[8] N.V. Krylov and B.L. Rozovskii, On evolution stochastic equations,in: Itogi nauki i techniki VINITI (1979) 71-146.[9] N.V. Krylov and B.L. Rozovskii, Stochastic partial di�erential equa-tions and di�usion processes, Uspehi Mat. Nauk 37, No.6 (1982) 75-146.
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