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Abstract

We study the asymptotic behavior of the distributions of solutions of the
randomly perturbed wave equations 9%u.(t, z)/0t* = a*(y(t/€))Au (¢, z) in
a bounded region G with a smooth boundary I' with some initial and zero
boundary conditions on I'; where y(t) is an ergodic jump Markov process.
It is shown that the distributions of the random field wu.(t/€, #) coincide
asymptotically with the distribution of a random field which is represented
by its series expansion in terms of the eigenfunctions of the Laplace operator
A in the region G with zero boundary condition on I' with coefficients
depending on a sequence of independent Wiener processes.

1 Introduction

Let (Y,C) be a measurable space and y(t) be a homogeneous jump
Markov process in (Y, C) with transition probability P(¢,y, C'). We consider
the wave equation of the form

O?u.(t, )
o2

with the initial and boundary conditions:

- az(y(é))Aue(t, 2),z€G (1.1)

1Supported in part by NSF Grant DMS93-12255. AMS 1980 subject classifications.
35R60, 60H15, 60J99. Key words and phrases. Stochasticly perturbed wave equa-
tions, Markovian perturbations, asymptotic representation, asymptotic coincidence of
distributions.
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0 ue(t, @) |t=0 = g(x), uc(t, 2)|per =0, (1.2)

ue(0,2) = f(x), 5

where G C R? is a bounded region with a smooth boundary I'.
We suppose y(t) is an ergodic process with the ergodic distribution
p(dy). Let @ > 0 be defined by

a* = [ a*(y)p(dy). (1.3)
Then it follows from [5] that u.(¢,2) converges in an appropriate metric to
the solution of the averaged equation
O?u(t, x)
o2
with the same initial and boundary conditions (1.2).
It is well-known that the solution to (1.4) has the form

oQ

u(t,z) = Zrn1/)n(x) cos(av/Ant + ¢n), (1.5)

n=1

= a’Au(t, z) (1.4)

where the functions ¢, (2) are determined by the eigenvalue system

A1/)n($) + /\rﬂ/)n(x) =0, 1/)n(x) =0,z€el,
S on(@)m(x)dz =0, n # m and [, Y2 (z)de =1, (1.6)
D<M <A<

The constants r, and ¢, are determined by the initial functions f and

g as follows: Let A, = [, ¢n(2)f(x)de, av/A, By = [ tn(x)g(x)de.
Let > (|An| + |Ba|) < co. Then r, = (A2 + B2)Y? r,cos ¢n = An,
n=1

rp8ing, = —B,.

In this paper we present an asymptotic representation for ue(%, z), as
e — 0. We use the notions of weak convergence and asymptotic coin-
cidence of distributions. Let us recall these concepts here. Let Ve(t, z),
Vo(t, z), Ve(t, ) be random fields. Vi(t,z) converges weakly to Vy(t, ) if
E¢(Ve(ty, z1), ..., Ve(tn, xq)) — E¢(Vo(t1,21), ..., Voltn, ,)) and the dis-
tributions of V, (¢, ) and V,(¢, ) coincide asymptotically if

E{QS(VE(tl, l‘l), ceny Ve(tn, l‘n) — QS(VE(tl, l‘l), ooy Ve(tn, l‘n)} — 0
as € — 0 for all bounded continuous function ¢ : R® — R and 1,...,t, €
Ry, x,...,zp € R,

Let us make some historical remark relevent to this work. The problems
considered here are special cases of a general problem of investigation of
dynamic systems under the influence of random perturbations. The study
of these problems began by N.M. Krylov and N.N. Bogolubov in the 1930s
in connection with some problems of mathematical physics. The work was
extended by a student of N.N. Bogolubov, namely I.I. Gikhman, who for
these purposes laid down the foundation of the theory of stochastic dif-
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ferential equations in 1940s. Major contribution in the development of
asymptotic methods in investigation of randomly perturbed dynamical sys-
tems was made by R. Khasminskii in his well known monograph (1969). G.
Papanicolaou, D. Stroock and S. Varadhan (1977) proposed a very general
martingale method for studying the asymptotic behavior of continuous and
jump dynamical systems, in particular they found a diffusion approximation
for such systems for large time. We consider here randomly perturbed wave
equations, where the corresponding dynamical system is of infinite dimen-
sion. Infinite dimensional dynamical systems under various assumptions
were studied by G. Papanicolaou and S. Varadhan (1973), G. Papanicolaou
(1978). We note that the problems under consideration are closely con-
nected with some problems of stochastic P.D.E. which were developed by
N.V. Krylov and B.L. Rozovskii (1977), (1979), (1982), E. Pardoux (1977),
B.L. Rozovskii (1985). Randomly perturbed PDE’s were considered by R.
Figare, E. Orlandi and G. Papanicolaou (1982); R. Khasminskii, F. Hop-
pensteadt, H. Salehi (1994); F. Hoppensteadt, H. Salehi, A. Skorokhod
(1994).

The main results of this paper which consists of two theorems and sev-
eral corollaries are stated in Section 2; their proofs are provided in Section 3.
In Section 4 applications to vibration of string and membrain are discussed.

2 Results

This section consists of three parts. In part 1 our assumption are
stated. Part 2 covers some auxilary materials and part 3 is devoted to the
statements of the main results.

2.1 Assumptions

(2.1) We assume that the process y(¢) has some regularity properties.

Let Var(im; — ms) denote the variation of the difference of two measures.
We assume

sup Jo© Var(P(t,y,-) = p(-))dt < o0 (A1)

This condition implies the asymptotic normality, as 7" — oo, of the integrals

F(y(t))dt for every bounded measurable function f.

oM~

(2.2)  Other assumptions are concerned with the region G and the initial

functions f(x) and g(z). Let ¢y (x) and A; satisfy the relations

App(z) + X tp(x) = 0in G, Yp(@)|eer =0, [, Yi(z)dr = 1.
We suppose that
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1) {¢x(x)} is an orthogonal basis in Ly(G)

2) sup |¢n(x)] < oo, ¥p(x) are continuous
kxeG

3) Zx\;1<oo

) f@) =3 An(@).9(0) = & Butu(z)

and these series are uniformly convergent.

2.2 Auxiliary Results

The proofs of our main results are based on some general asymptotic
theorems for randomly perturbed ordinary differential equations with al-
most periodic coefficients.

Let z(t) be the solution of the equation

dz.(1)

L = aftelt), w(L)), w0) = 2o (2.3)

where a(t,z,y) : Ry x R4 x Y — R%.
We assume the existence of the derivatives al. (¢, z, y) and ol (¢, 2, y) and

that the function a(t, z,y), al.(¢, 2, y), al.(t,2,y) are bounded measurable
in y and continuous in ¢, z uniformly with respect to y. Besides we suppose

[a(t,z,y)p(dy) = 0.
Suppose that the transition probability P(¢,y,C) of the process y(t)
satisfies Assumption (A1). Let

R(y,C)= [, (P(t,y,C) = p(C))dt,

5 (2.4)
Gep(r)= [ [ (a—x(so’(l‘),a(t,r,y’)),a(t,x,y)) p(dy)R(y, dy').
Theorem 2.1. Let for any ¢ in C(RY) the limit
Go(x) = lim(1/2T) [T Gup(e)du, (2.5)

exist as T — oo uniformly it > T.
Then the process I(t) = xe(%) converges weakly to a diffusion process &()

with the generator G and the initial value 2(0) = zo.

2.3 Main Results

Using the Fourier method we obtain the following representation for
the solution of the stochastically perturbed equation (1.1):
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uc(t, ) = > rpp(e exp{\/_fo K(y%))sin2a,(0x (e, s) + s)ds} (2.6)
x cos ap(Or (e, 1) + 1),

where a; = v/ Aza, and 0;’s are the solutions of the differential equations

d@k(e Y = VARK(y())(1 + cos 2ar(0r (€, 1)),  Or(e,0) = @ (2.7)

The coefficients r;’s and ¢’s are determined by the initial functions f(xz)
and g(z), and the kernel K(y) = (a*(y) — a*)/2a.

For the asymptotic behavior of the summandsin (2.6), we introduce the
random functions

Zo(e,t) = [y K(y(2))ds,
Zi(e,t) = [7 K(y(2))(cos 2arbs (e, 5) + s)ds, k=1,2,...
Vile,t) = [ K(y(2))sin 2ay (85 (¢, s) + s)ds, k=1,2,...

o » o=

Theorem 2.2 Let the transition probability P(t,y,C) of the process y(t)
satisfy Assumption (A1). Then for all m, the functions

(Zo(e, %), 71 (e, %), ooy Zml(e, tg), Vi (e, tg), ooy V(e %))

converges weakly, as e — 0, to the system of real-valued independent Wiener

(Zo(t), Z1(1), ..., Zm (1), VA(1), ..., Vin(1))
for which EZy(t) = EVi(t) = 0 and

processes

EZE(t) =2¢ct, EZ2(t) = EVA(t) = o,
c= [y [ [E(y (P(t,y,dy') = p(dy))p(dy)dt.

Corollary 2.1. Let Assumption (As) be satisfied, and let
Z rre™t < oo forall ¢t > 0.

Then the distributions of ue(tg, z) coincide asymptotically with the distribu-
tions of the random field

oQ

ue(t,z) = Z rm/;k(x)e\/ka(t) cos[ak —|— Zo(t) + VA 2k (1)) + orl-

k=1

By equation (1.5), the solution to the averaged equation (1.4) is given
by the formula
a(t,z) = rathn(z) cos(@y/Ant + n). (*)

n=1
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By Corollary 2.1, the distributions of u.(t/e, ), u(t, #) being the solution
of equations (1.1)-(1.2), coincide asymptotically with the distributions of
the random field @.(et, ) given by

n (€)W (2) cos(av/Ant + @n(et)), (**)

Etl‘

||M8

where

1) = ruexp{y/A V()
0= en+av/ A Zo(0) + VA Za(1)}

We therefore obtain:

Corollary 2.2. Formaulas (*) and (**) have the same form, but in formula
(**) the amplitudes and the phases of eigenoscillations rp(et) and p(et)
are random and slowly change with the change of t.

Corollary 2.3. Ift changes in a bounded interval then the erpressions in
the right hand sides of (*) and (**) coinside asymptotically, since ry(et) —
rn and pn(et) — on, as € — 0.

Note that the joint distribution of the processes
Zo(et), ..., Zm(et), ..., Vi(et), ..., Vin(et), ...
coincides with the joint distribution of the processes
VeZo(t), .o o N€Zm(t), .. VEVI(L), .. VEV(t), . ..
Therefore we have:

Corollary 2.4. The distributions of the random function ac(et,x) in (**)
coincides with the distributions of the random function

ui(t,x) =
22021 7 exXp{V/eV/ A Vi (1)} (2) cos{av/Ant + @n + Ve(pn(t) — ¢n)} -
It is easy to see that as € — 0 we have

J2 2 0,) = i1, 2)) — (1 ).

where Ug(t, ) is given by
up(t,x) =

Yoy Tt (2){V A0 Vi (1) cos(@v/Ant 4 on) — (#n(t) —on) sin(av/Ant +on) ).
Thus:
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Corollary 2.5: %(ue(t, z) —u(t,z)) converges weakly to ug(t, ).

3 Proofs

We proceed to make some transformations of the problem. Let
¢ (x) and A be determined by the relation (1.6).
Let

an(e,t) = [, uc(t, e)n(x)de, n=12,... (3.1)

Then ay(e,t) is the solution of the ordinary differential equation

%an(e,t) + Ana?(y(L))an (e, t) =0 (3.2)

with the initial conditions

an(e,0)=al

Jo F(@)n(x)dz,
(3.3)

ay, = fG g(x)¢n(z)dz.

Ean(at)lt:o

We introduce new variables r,, (€, ) and ¢, (¢, ) which are related to «, (e, 1)
by the relations

an(e,t) = rpe,t) cosnpn(e, ) (3.4)
%an(e,t) = —aprple, ) sina, on (e, t), (3.5)

where a,, = VA, a.

Lemma 3.1. ¢, (¢,1) is the solution of the equation

dpn(€,t)

e L4+ K(y(£))(1 + cos 2a,pn(e, 1)) (3.6)

with the initial condition ¢, (e,0) = ¢, and

rn(€,1) = ryexplan fot K(y(%))sin(2a,¢n(e, s))ds, (3.7)
where
. a*(y) — a*
K(y) = 0 and (3.8)
al =1, cosdnpn, ab =r,sind,p,. (3.9)

Proof. We consider the derivatives of the right hand sides of the relations
(3.4) and (3.5) and the relation (3.2). We can obtain the equalities:
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d
Ern(e, t) cos(anpnle,t)) — anry (€, t)agon(e, t)sin(anpen(e, t))

= —apra(e, ) sin(anpn(e, 1)), and

d d
Ern(e, t)sin(anpn(e,t)) — Eli?“n(E, t)agon(e, t) cos(anpn (e, t)

_an
2, 1 -
=—-\a (y(z))rn(g t) cos(anpn(e, t)).
These relations imply the validity of the system of the first order equations:

a2 M = /\naz(y(tg)) cos?(anpn(e,t)) + a2 sinz(éngon(e, t)), (3.10)

d
Ern(gt) = (3.11)

(An@®(y(£)) = @27, 1) sin(@n o (e, £)) cos(@na(c, 1),

[

(3.6) follows from (3.10); (3.11) is a linear equation with respect to rp(e,?)
and (3.7) is the representation of its solution; (3.9) follows from (3.4) and

(3.5).

We introduce the additional variables:

Zo(e,t) = [y K(y(%))ds, (3.12)

Zn(e,t) = [7 K(y(2)) cos 2an(s + 0, (e, 5))ds, n=1,2,... (3.13)

Vo(e,t) = fo K(y(2))sin 2an (s + 0n (e, 5))ds, n=1,2,... (3.14)

On(e,t) = on(e,t) —t, n=1,2, ... (3.15)
Then we have

pn(et) =1+ Zo(e,t) + Zn(e,t) + #n, (3.16)

Pa(e,t) = 1 exp{an Va(e, 1)} (3.17)

Lemma 3.2. Let condition (As) be fulfilled and 3 r, < oco. Then the
function u.(t,z) may be represented in the form

ue(t,z) = (3.18)

oQ

Z Pt () explan Vo (e, 1) } cosan(pn + 1+ Zo(e, t) + Zn(e,1)).

n=1
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Proof. Suppose the series in the right hand side of (3.18) is absolutely and
uniformly convergent and denote its sum by u*(¢, z). Then [ u.(¢, z)¢,(z)dx
= [u*(t, 2)¢n(x)ds, therefore u.(t,x) = u*(t,z). Note that y( ) is a step
function and for fixed € > 0 and 7' > 0 we can divide the interval [0, T] into
a finite number of intervals on which y(t) is a constant. It is easy to check
that @, V,(¢,?) is bounded in n and ¢ when y(¢) is constant. I

Let n be fixed. We consider the R3?*t!_valued function
Z0M(e, 1) = (3.19)
(Zo(e,1), ..., Znle, 1), Ve, 1), .., Vil€, 1), 01(e, 1), ..., Onle, 1)).

This function satisfies the equation
d
76 t) = K(y(0)e™(t, 20 (e, 1)) (3.20)

where the coordinates of ¢(™)(t, ) : Ry x R**! — R3**! are determined
by the relations

0oty 20,y ooy Zny U1y« oy Un, 01,0 0p) =1

©il5 20, -y Zny V1, ooy Uny b1, 00 0,) = cos2a;(t+0;), 1 <i<mn,
Ontilt,zo, ..., 0p) =sin2a;(t +6;), 1 < i< n,
Yantilt,zo, ..., 0p) = 14+ cos2a;(t +0;), 1 <i<n,

here
¢(n)(taz) = (SDO(taZOa .. "gn)’ .. .,ngm(t,ZO, .. ~a9n))’
2= (20, ) 20y V1, -+ oy Uny B0, ).

Investigation of asymptotic behavior of the solution to equation (3.20)
will be based on some general statements regarding the weak convergence
of stochastic processes to a diffusion process.

We consider a family of stochastic processes {z(t), € > 0} with values
in R? which are defined on Ry and a diffusion process z(¢) with values in
R® with a generator G which is determined on the functions f € C?(R%)
by the formula

Gf(x) = (alx), f'(x))+ %tr F'(x)B(z). (3.21)

Here (-, -) is the scalar product in R?, a(z) is a smooth R%valued function
on R B(z)is a L(R?)-valued smooth function on R?, f/(z) and f(x)
are the derivatives of f(z); f'(z) is a R%valued function and f”(z) is a
function with values in L(R%); for A in L(R?) trA denotes the trace of A.

Suppose that the process x.(¢) is adapted to a filtration {F;}.
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Proposition 3.1. Let z.(0) = zo for all ¢ > 0, and let for all f € C3(RY)
and 0 <ty <ty < 00

lim BIE{f(.{t2)) — S(.(00) — [ GFa(s))ds /75 } = 0. (3.22)
Then x.(t) converges weakly to x(t), as e — 0. (see [15], p. 77).

We will apply this proposition to prove Theorem 2.1.

Proof of Theorem 2.1. Denote by (F5) the filtration which corresponds
to the process y(tg)

1) Let g(t,z,y) : Ry x R¥xY — R be a bounded function measurable in
y and continuous in ¢, # for which the derivatives ¢, (¢, z,y) and ¢7 (¢, %, y)
satisfy the same conditions. Then for 0 < ¢ < 5

E{S g(t,xe(t), y(L)(t))dt/F5 ) (3.23)

= B{f)* [ g(t,xct), y)p(dy)dt + ¢ [* Ry (t, wo(t))dt/ )}
+0(¢e) + (t2 — t1)o(e),

where
Ry, (t,x) = [ [(g5(t, 2, ), a(t, =, y))p(dy)R(y, dy'). (3.24)
Let
R(t,y,C) = P(t,y,C) = p(C), §(t,x,y) = g(t,x,y) — [ g(t, , v )p(dy).

Then formula (3.23) follows from relations:

() E{f gt we(t), w(D))dt/ )
= E{J;7 g(t, we(t1), y(L))dt
+ /i ftl 0ot ze(s),y(%)), als, xe(s), y(2)))dsdt/F, }
—e{fy T fg (t1 + eu, z ()Y ) R(u, y(2), dy')du
+ /17 Jo = S (@(s + cwwe(s),y), als,vels), u(2))x
R(u,y(%), dy' Yduds/F¢ }
= cE{[,? [(go(s + ew,a(s),'), als, ec(s), y(2) R(y(2), dy')ds/ F,)
+0(€) + (t2 — t1)o(e).
(b))  E{f’g (%))dt/ftl}
= EB{J,” fgt ve(t), y)p(dy)dt /75 + O(e)(1+ (t2 — t1)).

2)  Let f(t,x) : Ry x R — R be a bounded continuous function with
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bounded continuous derivatives f.(¢,x), fil.(t,z). Let Spf(t,2) =
(1/27) [ f(s,2)ds, t — T > 0.
Then for T' < t; < 13,

E{f ft,wc(t))dt — [[7 Spf(t, xc(t))dt/Ff} = (3.25)
0( (T + D)tz —t1)) + O(T).

This follows from representing the left hand side of (3.25) in the form

E{sy [0 [ (b)) = f(t,2c(s)))dsdt/Ff } + O(T)
= B{ [ [ [t we)), alu, z(u), y(L))dudsdt | Ff }+O(T)
= O(eT'(ta — t1)) + 0( (t2 = t1)) + O(T),

where we have applied relation (3.23) to the integral [7( ) du.
Let peC3)(RY). Then
E{p(ed(2)) — p(ec(2)/75, )
= B{f 24 (2s)), als,ze(s), y(2)ds/F, ) )
= ¢ B{J PGop(ac(s))ds/Fe )+ O(e) + (ta — 11) 242
= ¢ B{[ 21557 Gaplae(s))ds/ .}
+0(e) + (1 —mﬁ +O(A(T + 1) 4 O(eT)
= B{[12Gp(ic(s))ds/F{ 1.} + (1 = 1)O([|Gy — S1Gagl)
HO(T) + (8> = t1)(LL 4 O(eT) + O(e)),

where we have used (3.23) in asserting the second equality and (3.25) in
the verification of the third equality.

Let € — 0 and 7" — oo such that €I' — 0. Then we can apply Proposition
3.1 to complete the proof. I

Remark 3.1. Using the relation ((¢',a),a) = (¢"a,a) + (¢',d’a), the
operator Gy f(x) may be rewritten in the form:

Gof(x) = (a(t,z), f'(x)) + %tré(t, o) f"(2) (3.26)
where
= [ [al(t,x, ¥ )a(t, x,y)p(dy)R(y, dy) (3.27)

is a R%valued function and B(t, z) is a L(R%)-valued function for which
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(B(t,x)z1,22) =2 [ [(a(t,x,y), z1)(alt, 2,y), z2)p(dy)R(y, dy'). (3.28)

Therefore

where

a(x) = lim Sra(t, x), B(x) = lim Sy B(t, x); (3.30)
and the existence of these limits is the main condition of the theorem.

We now present the proofs of Theorem 2.2 and Corollary 2.1. Proofs of
Corollaries 2.2 — 2.5 were indicated at their enunications.

Proof of Theorem 2.2. the proof is based on an application of Theorem
2.1to equation (3.20). In this case d = 3n+1 and the elements of the matrix
B(t, z), which we denote by b;;(t, ), are determined by the equalities:

INJZ']' (t,2) = 2epi(t, 2)p; (2, 2)
(here z = (z0, ..., 2n, V1,...,0n, 01,...,0,)) and elements I;Z](z) of the ma-
trix B(z) are determined by equalities l;ZJ(z) = QCTlim St{2¢;(t, 2)p;(t, 2)}.
Therefore

0 if 0<i #£j5<2,
bij(z) = 2¢ if i=0, j=0,
c if 1<i=j<2n.

The elements (coordinates) of the vector a(t, z) = (@o(t, 2), ..., asn(?, 2))
are determined by the relations

n

1(1,2) = (X it et )+ Y st gkan(ts 2
k=0

k=1

"9
+ ; %%(ta 2)pryan(t, 2))}

We can see that

a;(z) = TILII;O Sr{ai(t,z)} =0, 0<i< 3n.

We note that 0;(¢,t) = Zo(e,t) + Zr(e,t), 1 < k < n. Thus the equa-
tion (3.20) satisfies the conditions of Theorem 2.1, and hence the process
(Zo(e, L), ..., Zn(e, L), Vie, 1), ..., Va(e, L)) converges weakly to the diffu-
sion process (Zo(t), I (1), Vi t),..., Vi (t)) whose drift term is zero and
whose diffusion matrix is diagonal with the most left top corner diagonal
term being 2¢ and the remaining diagonal elements are ¢. i
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Proof of the Corollary 1. It is easy to see that the statement of Corollary
2.1 follows from formula (3.18) and Theorem 2.2 if the series in the right
hand side of (3.18) converges uniformly in ¢ for e small enough. As ¢, () are
bounded so the convergence needed becomes a consequence of the following
lemma.

Lemma 3.3. We have
E exp{a,Vp(e, 1)} < byexp{ea’bat}, (3.31)

where b; > 0, 1 <i <2, are constants.

Proof. Let Hy(¢,t) = exp{anVa(e,t)}. Then

Ho(e, t)_l—l—anfo K(y(2))cos2an(s + 0,(¢, s))ds+

+a? 0<f<f<t Ho(e, u)[x( (L)) K (y(2)) cos 2ay, cos 2a,(0n (¢, s)+5)duds.

Using formula (3.23) we can obtain the inequality
EHy(e,1) <14 O(et) + €bs fot EH,(e, s)ds
for some by > 0. This implies (3.31).

4 Some Applications

Here we present asyptotic formulas for solutions of stochastically
perturbed wave equations for vibration of a string and vibration of a circular
membrane.

a) Vibration of a string. Non-stochastically perturbed equation for
free vibration of a string is given by

u(t,x) 0%t )

oz " T o (4.1)
where the solution u(t, z) is subject to:
u(t,0) = u(t,1) = 0, boundary conditions, (4.2)
uw(0,2) = f(x), % = g(#), initial conditions. (4.3)
The Fourier method allows us to write the solution in the form
u(t,z) = 3 r sin(kwa) cos(akwt + ¢p), (4.4)
k=1

where r; and ¢y are determined by the initial conditions:
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T cOS P = 2 fol sin(kwa) f(x)de,
(4.5)
(amk) rpsingy = —2 fol sin(kwa)g(x)dx

rp’s and ¢y ’s are called the amplitudes and the phases of the eigenoscilla-
tions of the string respectively, k = 1,2, ...

We now consider the stochastic version of the wave equation, namely

O2(t, x) o O?uc(t, x)
oz ¢ (y( ))T

o |

(4.6)

with the same boundary and initial conditions (4.2) and (4.3). The Markov
process y(t) is the same as before. Let r;’s satisfy the condition

oQ

Zrke(”k)Qt < oo forall ¢>0. (4.7)
k=1

Then the distributions of the random field ue(%, z) coincides asymptotically
with the distributions of the random field

it x) = (4.8)

oQ

Z ek mVi(t) sin(kma) cos[ak(% + Zo(t) + kmwZi (1)) + 1]
k=1

where ap = akm; Vi(t), Va(t),..., Zo(t), Z1(t), ... are independent Wiener
processes with mean zero and EZy(t) = 2¢t and EV2(t) = FZ2(t) = o,
k=1,2,... where ¢ is as in Theorem 2.2.

b)  Vibration of a circular membrane. The unperturbed equation in
this case is of the form

& u(t, 2,y
% = > Au(l,z,y), (r,9) € G, (4.9)

G={(x,y) 2’ +y* <1}, T ={(z,9) s 2 + > = 1},
The boundary condition is:

u(t, z,y) =0, (v,y) €T, (4.10)

and the 1nitial conditions are
0

The solution of (4.9) subject to (4.10) and (4.11) may be represented in the
form
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u(t,r,0) = Z Z {7n m¥n m(r, 8) cos(arn mt + ©nm)

n=0m=1

(4.12)
+r:,m :,m(ra 6) Cos(a/\”,mt + gp;,m)}a

here ¢y m (7, 0) = Jn(An m7) cosnb, 1/):77”(7“, 0) = Jo(An,mr)sinnb, J, is the
Bessel function of the first kind of order n, A, ,, is the mth positive zero
of the function Ju; 74m, 75, 1y Pnm, ¥y, 5, are determined by the initial
conditions; r, @ are the polar coordinates of the point (z,y).

Let w (¢, z,y) be the solution of the stochastically perturbed equation
(4.9) in which a? is replaced by a*(y(%)) with the same boundary and
initials conditions (4.10) and (4.11). Then under the condition

(o) (o)
DD ramen!
Tpme mm' < oo forall £ > 0,

n=0m=1
the distributions of the random field ue(%,x,y) coinsides asymptotically
with the distributions of the random field

Bt 2, 0) =3 5 {Fmmtnm (7 0) XD (s Vi (1))

n=0m=1

X Cos[a/\n,m(% + ZO(t) + /\n,mZn,m(t)) + Spn,m]
(4.13)
75 m ¥ (7, 0) exp(An,m Vi m (1))

X COS[E/\nym(% + Zo(t) + /\n,mZ;,m(t)) + @Z,m]}a

where 7y, i, 7 1y Pnoms €5 are the same as in formula (4.12), and Zo (1),
Vam(t), Znm(t), 2 n(t) for n > 0 and m > 1 are independent Wiener
processes with mean zero and EZ3(t) = 2c¢t and EV,? (1) = EZ} (1) =
E{Z} ()} =ct,n>0,m>1.

Remark 4.1. Note that

E(rnenﬂ'vn(t)) — rnen%—% t/2 )

Suppose that there exists a number 7" for which

sup rne"Qt <oofor t<T and sup rne"Qt =+oo for t>1T.

n n
Then the series (4.8) converges for ¢ < :—g; and diverges for ¢ > j—?ﬁ .

Let us consider the eigenoscillation of the form

u(t, x) = exp{naV, (et)} cos{anmt + Zo(et) + nwZ,(et)} sin(nme).
Then its amplitude
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exp{nmV,(et)}

is unbounded in probability as n — co. Thus random perturbations im-
ply unbounded growth in the amplitudes of the eigenoscillations with high
frequences. The condition

2
sup rpe” < oo
n

prevents the break down of the string in presence of random perturbutions.
Similar conclusions can be reached regarding the vibration of a mem-
brane.
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