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Abstract

This paper is a discussion of the characteristics of a computer program
designed to implement the extended least squares algorithm for ARMAX
models. The program simulates single input and single output ARMAX
systems with arbitrary dependence on past states, controls, and noise. The
controls implemented by the program are constant control, constant feed-
back control, white noise, excited control, diminishing excited control, op-
timal minimum variance control, and adaptive minimum variance control.
The program is shown to be a valuable tool for examining parameter con-
vergence, rate of convergence, and characteristics of the model, including
stability and the strictly positive real condition.

1 Introduction

In the theory of parameter estimation, many algorithms have been ad-
vanced for the purpose of showing convergence of the estimates of param-
eters. Often these algorithms are defined in a way that glosses over the
actual step by step procedure that the algorithm requires. A set of ap-
proximators are defined recursively, a trajectory is either given or evolves
as the system advances, and a set of characteristics are defined which de-
termine convergence and rate of convergence. However, the initial steps of
the algorithm, involving questions of what to do with the initial values for
the estimators, where to start the procedure , and what initial values the
trajectory should have, are left out. Through the use of simulation, we are
able to verify the results of commonly stated theorems which provide suf-
ficient conditions for convergence of the extended least squares algorithm,
while simultaneously examining the necessity and effect of these conditions.
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A step by step procedure is developed and results of the procedure are
discussed. Also, questions of Strictly Positive Real conditions are investi-
gated and discussed. Our primary interest is the implementation of the
extended least squares estimator algorithm for the auto-regressive, moving
average, exogenous control or ARMAX model. Furthermore, we investigate
the convergence and rate of convergence of the estimators of the parame-
ters of these systems under various control policies. The control policies
we focus our attention on are constant control, constant feedback control,
white noise, excited control, diminishing excited control, optimal minimum
variance control, and adaptive minimum variance control.

2 The Computer Algorithm

The computer program was designed to implement the extended least
squares algorithm for ARMAX models. The extended least squares algo-
rithm, sometimes referred to as the ELS algorithm, is also known as pseu-
dolinear regression (PLR) or approximate maximum likelihood (AML). An
ARMAX model is a linear relation with dependence on the past noise (w;),
states (y;), and controls (u;). Thus, the models we consider are of the form:

yn f— _Al_"'_Apyn—p—i—"'
+Blun—d+32un—d—1+"'+Bqun—d—q+1+"' (21)
+Clwn—1 +--+ Crwn—r + Wp, N Z Oa

Yn =wp, =0,n<0;p>0,r>0,d>0.

Here, y;, u;, and w; are k x 1 real-valued vectors; A;, B;, and C; are k x
k real-valued matrices; p is the number of past inputs the system depends
on; ¢ 1s the number of past controls; r is the number of past noise inputs;
and d is a delay. The particular computer program used to investigate the
properties of the above system is restricted to the case of single input and
single output. Furthermore, the type of control is restricted to the seven
kinds mentioned previously. The noise inputs used in the simulation are
randomly generated numbers from the normal distribution with mean 0
and variance 1.

The computer program employs an on-line approach to estimate the pa-
rameters. That is, as the trajectory evolves according to the model, the
estimates evolve. Also, the estimate at each increment is saved for later
evaluation. This aids greatly in comparing the rates of convergence of dif-
ferent control policies.

Before going further with the explanation of the computer program, it
will be advantageous to introduce some definitions which will clarify the
later discussion. Let
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g = [_Al..._ApBl...chl...Cr]T;
¢n = [yn "'yn+p—1un—d"'un—q—d+1wn"'wn—r+1]T;
Wy, = Yy, —0,6,_1, where @ is called an @ priori estimate of

noise, 1. e. the algorithm estimates the
noise of the present state using the past
states of the system,;

qin = [Ay” ...yn+p—1un—d~.~un:q_d+1@n...@n_r_l_l]T; and
gn-l—l = gn + anPn¢n(yg+1 — ¢);1;9n)’ where

an = (L+¢,Pagn)”" and

Pn+1 = (Pn — Clnanj)n¢)¥;Pn)

(2.2)
Note that P,y; is derived using the Matrix Inversion Lemma. [See: [CG],
pg. 90, for the derivation of P, and a,.]

Throughout our investigation, we assume that the state of the system
and the controls of the system are observable. However, we assume that all
coefficients and the noise terms are unobservable. Note that we can rewrite
the previous ARMAX model in the linear regression form

Yn+1 = 9T¢n + Wn+1,

and our purpose is to estimate @ by HAn

Now, we return to the discussion of the computer algorithm. First, a
state 1s generated. Since we take yy = 0 and wy = 0, we have

y1 = Biug +wy.

Future values may involve more terms as the trajectory, controls, and noise
take non-zero values. An a prior: estimate of the noise is made. Next, the
first estimate of the parameters of the system is made. Since 6, is defined
recursively, an initial value for 6, is required. Since no a prior: information
about 6 is assumed, we arbitrarily choose

6, =0---0].

Another parameter that is defined recursively is P,. Note that P, is
defined non-recursively by

k=1

Unfortunately, since

¢1:[3/10"'0“10"'01010~~0]T and
-1
P = [¢107] 7,
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it is possible that ¢1¢7 will not be invertible. Then, P; would not be
defined. Then, since P, 1s defined recursively, P,, would not be defined. To
avoid this problem, we choose

Py = alpqqyr, where 0 < oo < 1/e.

Then, P, is clearly invertible, and the recursive definition of P, is well-
defined. This modification does not affect the asymptotic behavior of the
system. [See: [CG], pg. 91]

After 671 has been defined and Py has been calculated, the recursion be-
comes straightforward. The next state of the system is generated. The noise
is estimated, etc.

3 Owutput of the Program

The program displays the system trajectory, the system’s control, the
estimates of the parameters (in solid lines), the true parameters (in dotted
lines), and the cost function of the path, control, and their total. The cost
function depends on the number of steps taken in the simulation (k) and
the trajectory of the path or control.

The cost function employed for the path is

path kaz :

That is, the cost of the path is its average deviation from zero sqared. This
is the cost that is minimized under the optimal minimum variance control
policy. The cost is computed at every stage of the evolving system. The
cost of the control is similar:

k
— lE
contro ~— % :

The total cost is simply the sum of the costs for the path and control:

Ctotal = Cpath + Ceontrol:

As was noted earlier, the program maintains cumulatvie information of the
costs, state, and control.

4 Main Results

The following discussion is based on the results of numerous simulations
conducted using the previously discussed computer program.
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4.1 Constant Control

Convergence of the parameters is good under the constant control policy
when the system is of the form

yn f— _Al_"'_Apyn—p—i—"'
+Bitt— g1+ - (4.1)
+Ciwp-1+ ...+ Crwp_p + Wiy
1.e., there is only one parameter to estimate for the controls. In the case

that the system depends on more than one past control the algorithm is able
to identify the sum of parameters for past controls. Suppose the system has
the form

yn f— _Al_"'_Apyn—p—i—"'
+Bitp—q—1+ -+ Byup_q_q+--- (4.2)
+Ciwp_1 4+ -+ Crwp_r + Wy, where ¢ > 1.

Since every control (u;) is identical, the system can be re-written in the
form

yn f— _Al_"'_Apyn—p—i—"'
Fup_g-1(Bi+ -+ By)+ - (4.3)
+Ciwp_1 4+ -+ Crwp_r + Wy, where ¢ > 1.

q

Thus, the extended least squares algorithm is able to identify ZBi’ but
i=1

not By, Ba, ...,B, individually.

4.2 Constant Feedback

A problem in identification similar to (4.1) arises in the constant feedback
policy. The control is generated using the most recent state of the system.
Thus, we have

u; = cy;, for some constant c.

Then, a system depending on one past state and one control,

Yn = A1+ Biup—_1 + wy,

can be rewritten as

Yn = (Al + Blc)yn—l + wy,.

Hence, the algorithm is only able to identify the quantity (A1 +Bi¢). Similar
results occur for models of arbitrary size.
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4.3 White Noise

If the control is of this type then the estimates of the parameters converge
if the system is stable. Also, for this control policy, the rate of conver-
gence is high. Under this control policy, the question of the necessity of
the so called Strictly Positive Real condition, or SPR, can be investigated.
Many systems were created with the SPR condition “just barely” violated.
In these cases, the estimates of the parameters did not converge in under
20,000 time steps. Although, this does not settle the question of necessity,
the program does allow the user to gain some familiarity with systems in
which the SPR, condition does not hold.

4.4 Excited Control

This control, similar to the white noise control, allows for the parameters
to converge when the system is stable. This control is especially useful if
the control coefficients are relatively small. In this case, as the estimates for
the control parameters get closer to their “true” values, the values for the
control increase. Thus, estimates and rates of convergence for the control
coefficients are improved. However, the other parameter estimates converge
more slowly under this policy than the white noise policy, for instance. Also,
the cost for controlling the system is quite high when the control coefficients
are close to zero.

4.5 Diminishing Excited Control

Under this policy the estimates of the control coefficients, will begin to con-
verge. In some cases, as the control diminishes, the estimates of the control
parameters grow worse and worse and do not converge. However, in many
cases, the other estimates of the parameters do converge. As expected, the
cost for control is relatively small. However, the total cost may be high
because the system is not being controlled optimally.

4.6 Optimal Minimum Variance

This control policy exhibits behavior similar to constant feedback control.
That is because this control is similar to the constant feedback control pol-
icy. We assume that the parameters of the system are known in order to
compute the control. Thus, estimating the parameters with the ELS algo-
rithm is of marginal interest. The equation for the control is

4

q
Uy = B% Z(Az + Ci)yn—i + ZBiUn—i .

i=1 i=2
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Not surprisingly, certain functions of the true parameters and their final
estimates are nearly equal. For instance, in many cases we have

A1 +Cy ~ Ali-cl
B, B, :

4.7 Adaptive Minimum Variance Control

This policy is self tuning, but not consistent. However, certain functions
of the true parameters and their estimates converge to similar values. For
instance, in many models we have
A 4C Xl‘l'é\l
B, B,
An interpretation of the reason for the estimates to self-tune and not con-
verge is that as the estimates converge to the correct values, the values used
for the control do not control the system optimally. This causes the esti-
mates to be incorrect. Thus, the estimates self-tune and do not converge.
Under the adaptive minimum variance control policy, we do not assume that
the parameters of the system are known. Instead, the estimates of the sys-
tem’s parameters are used to compute the control. Thus, the equation for
the control is similar to the optimal minimum variance case and has the form

P q
U, = E}r Z(ﬁz + ayn_i + Zé\zun—z

1 < -
i=1 i=2
5 Further Investigation

Investigating the behavior of the white noise control policy under con-
ditions when the SPR condition are nearly violated or just barely violated
is one avenue of further investigation.

The self-tuning aspects of the adaptive minimum variance control are
very interesting. A possible avenue of investigation is the distribution of the
limit points of the parameter estimates under this control policy.

Further aspects of the excited control are also open to investigation.
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