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abstract

G is said to be a short chord graph if for each vertex v there exists an odd
cycle on 2k + 1 (k > 2) vertices including v with all » chords adjacent to
v such that if & > 2 then » = 1 and the only chord is triangular (short).
G is said to be a doubly short chord graph if both &G and its complement
G is a short ch ord graph. We prove the SPGC is true if it holds for all
doubly short chord graphs. This class (G) is demonstrated to be nonempty.
In addition, we show the SPGC is true for all graphs G € G if there are no
graphs G € G that are simultaneously Berge and p-critical. In our approach
we use two known results, namely the Lovasz and Podberg characterizations
of p-critical graphs. In the concluding section, we obtain two more results
proved by a similar reasoning as in the first two theorems. They deal with
so-called doubly chordally dense graphs (see Definition 3.1). The SPGC is
again settled provided it holds for the above class of graphs.

1 Introduction

Claude Berge proposed to call a graph perfect if, for each of its induced
subgraphs F', the chromatic number F,v(F'), equals the size of a largest
clique in Fyw(F). By an odd hole Cap41 is meant a chordless cycle on
2k + 1 vertices, while 62“_1 stands for the complement of Caryi. The
Strong Perfect Graph Conjecture (SPGC) says a graph is perfect if and
only if none of its induced subgraphs is Cay4q or 62“_1 (such graphs are
called Berge graphs).
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While the forward implication (Conly if’) is obviously valid, the inverse

implication is still unsettled. Tt is known that F-free Berge graphs (with
no induced subgraph isomorphic to F') are perfect when F' is, for example,
K13 713—, the diamond” 14—, the tetrahedron”17—, the bull”2— or the
dart” 16—.
74— A number of interesting results on the SPGC of a different sort than
the ones mentioned above have been published in the last years, see for
example, ”1,3-6,8-11,15—. For k > 3, let (', ., stand for a cycle on 2k + 1
vertices (including v) with exactly one chord, which is a triangular chord
(joining two vertices whose distance on the cycle is two) adjacent to v. Let
C¥ mean a cycle on five vertices including v with one or two chords adjacent
to v.

Definition 1.1 We say G = (V, E) a short chord graph (s.e.g. for short)
if for each vertex v € V' there ewists a Cg;  cycle, k > 2. G 1s said o be

a doubly short chord graph if G and G are short chordgraphs (d.s.c.g. for
short).

The class of doubly short chord Berge graphs is nonempty. An example
is shown in Figure 1. It is easy to check that for each vertex v of G there
exists a CY cycle and that there are no induced copies of C's and C%7. Since
the complement G of G is isomorphic to G, the graph G is a d.s.c.g. and a
Berge graph.

Figure 1.
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To prove two theorems, we need hypotheses Hy, Hs (clearly, Ha implies ).

Hy. There are no graphs that are simultaneously Berge, p-critical and d.s.c

£
H,. Each Berge and d.s.c.g. is perfect.

We use H; to demonstrate that each Berge graph that is not d.s.c.g. is
p erfect, while Hs is sufficient to sette the SPGC. Independently of these
two hypotheses, we make use of the Lovasz and Padberg characterizations
of p-critical graphs. In the concluding section, we obtain two more results
proved by a similar reasoning as in the first two theorems. They deal with
so-called doubly chordally dense graphs (see Definition 3.1). The SPGC is
again settled provided it holds for the above class of graphs.

2 Proofs of Theorems

Theorem 2.1 Under hypothesis Hyi, each Berge graph that is not a doubly
short chord graph is perfect.

Proof. Suppose the family F of Berge graphs that are not d.s.c.g. and
not perfect is nonempty. Choose G = (V, F') € F with the property that if
G'= (V' E') € F then V < V'. Observe G is p-critical (G is not perfect
but each of its induced subgraph is perfect). Indeed, if not, G would contain
a p-critical induced proper subgraph G4 = (A, F4) which, by hypothesis
Hy, would belong to F, a contradiction. Since ' is not a d.s.c.g., either ¢
or G contains a vertex v such that there is no cycle CSyy1s k> 2. Without
loosing a generality, assume G is such a graph. Since G is a Berge graph,
w(G) > 2. Choose any € V with (z,v) € E. Since G is p-critical, V —{z}
is the union of @ = «(G) disjoint cliques C1,Cy,...C, of size w = w(G)
covering V' \ {z} (a(G) denotes the size of a largest independent set in
(). We may assume v € (7 . By Padberg’s theorem ”12—, exactly w
cliques in (G contain each vertex of (¢, particularly vertex v. Not counting
Cy , we thus have w — 1 cliques covering v, the latter implying (in view
of w > 2) the existence of a vertex b # z,b ¢ Cy , with (v,0) € E. If
we delete (v,b) from FE, the resulting graph Gy, = (V, E \ (v,b)) is still
not perfect for the Lovasz inequality 77— does not hold for G,;. In fact,
we have V = 1 + w(@) - a(G) > w(Gyp) - a(Gyp) because w(Gyp) = w(G)
and a(Gyp) = a(G) the latter being a consequence of the fact that any
independent set N in G,y of size a 4+ 1 should contain the vertices z,v,b
with (#,v) € F, a contradiction. Namely, if either v or b did not belong to
N, then N would be an independent set in GG of size a + 1, a contradiction.
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Also, if # ¢ N then N C |J;_, C; and because N N C; < 1 we would have
a+1=N<a.

Generalizing the last observation G, is not perfect, we delete from E
all edges of the form (v,b), where b € |Ji_, Ci, to conclude the resulting
graf GG, is not perfect. Since v does not any longer belong to w(Gy) = w(G)
cliques, because of deletion of a number of edges containing v, G, cannot be
p-critical and consequently must contain a proper subgraph G’ = (V/, B')
that is p-critical with o’ = w(G') > 2, o' = a(G’) > 2. The set V' must
contain vertex v and at least one vertex b € |J;_, C; because otherwise G’
would be a perfect graph as a proper subset of the p-critical graph G.

Since v € G, by the mentioned above Padberg’s theorem, v is contained
in exactly w’ maximal cliques in G. One of the cliques is C;1NV’. By virtue
of w’ > 2, there must be another cligue containing v. Such a clique must
contain a vertex not belonging to C; N V’. Because of deletion of all edges
of the form (v,b), b € |J;_, C;, the only candidate for such a vertex is .
This implies w’ = 2, showing that G = Capy1 in Gy, the latter being a
partial subgraph of GG. As a s ubgraph of GG, G' = (V', EV’) is a cycle on
2k + 1 vertices, k > 2, with m chords of the form (v,b;), ¢ = 1, ..., m, which
we deleted from GG when constructing the graph G ; denote this cycle with
m chords by G”.

If we show this is impossible for any value of m, we shall prove the
theorem. The case m = 1 is easy because the only chord, being not a
triangular chord by the choice of v, must ”divide” G” (on at least seven
vertices in this instance) on two cycles among which one has to be an odd
cycle, a contradiction. Observe the assumption there is no a C¥ cycle is
needed to obtain a contradiction when m = 2 and G” is a cycle on five
vertices. When G is a cycle on 2k + 1 vertices with k£ > 3 and m =2 (G”
has two chords (v, b1) and (v, b2)), then we again arrive at a contradiction.
Namely, if the both chords are triangular, then G” contains a chordless
cycle Coypyq, | > 2, whose t wo consequitive sides are (b1,v) and (v, bs).
Otherwise, if exactly one of the two chords is triangular, G” must contain
either an odd cycle with exatly one triangular chord, or an odd chordless
cycle (both instances cannot occure due to our assumptions).

Finally, if none of the chords (v,b1), (v, b2) is triangular, then either at
least one of them is a side of an odd chordless cycle (impossible), or both
are consequitive sides of an odd chordless cycle C' of length 2r 4+ 1 lying ”in
between” two other cycles of G”. If » = 1 then (G” must contain a cycle
Coyq (impossible), while in the case » > 2 the cycle G must contain the
odd cycle C lying in between two even cycles (also impossible).

Suppose we have a method M to demonstrate an odd cycle on at least
five vertices with m or less than m chords, all adjacent to vertex v, cannot
exist in G (this is true for m = 1 and m = 2). Using M we show no odd
cycle with m 4+ 1 chords, all adjacent to v, exists in (. Indeed, at least one
of m > 3 chords (v, b;) ”divides” G” into two cycles one of which, say C,
must be odd of length at least five with at most m chords. The existence of



Zbigniew Lonc 5

such a cycle C' contradicts, however, our method M.

Theorem 2.2 Under hypothesis Hy |, the SPGC holds.

Proof. If a Berge graph is a d.s.c.g., then it is perfect by hypothesis Hs .
Since Hs implies H1, Theorem 2.1 completes our proof. a

3 Conclusions

By a slight modification of our reasoning, one can obtain two more re-
sults.
Definition 3.1 A graph G is said to be chordally dense if for each vertex
x and each adjacent to it vertex v there exits a cycle on 2k + 1, k > 2,
vertices with all r > 1 chords adjacent to v and such that x and v are two
consequitive vertices of this cycle. G is saird to be doubly chordally dense if
both G and its complement G is chordally dense.

An example of a doubly chordally dense graph is the graph presented in
Figure 1.

Hj. There are no graphs that are simultaneously Berge, doubly chordally
dense and p-critical.

H!. Each Berge and doubly chordally dense graph is perfect.

Theorem 3.1 Under hypothesis H], each Berge graph that is not doubly
chordally dense 1s perfect.

Proof. We argue similarly as in the first part of the proof of Theorem 2.1.
In particular, we show that either G' or G contains vertices v,z such that
(r,v) € F or (z,v) ¢ F and there is no cycle in G(G) on 2k + 1, k > 2,
vertices containing x,v as consequitive vertices whose all » > 1 chords are
adjacent to v. As previously, we delete from E all edges of the form (v, ),
b e U?:z C;, to conclude the resulting graph is not perfect. Such a graph
must then contain a proper p-critical subgraph G’ containing z, v with w' =
w(G') =2, o = a(G') > 2. As a subgraph of G, G’ is an odd cycle whose
all chords are adjacent to v, with 2, v being two consequitive vertices of the
cycle, a contradiction with the choice of z,v.

Theorem 3.2 Under hypothesis HY, the SPGC is true.

The proof is the same as the one of Theorem 2.2.
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