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2 SPGC is true if it holds for allWhile the forward implication ('only if') is obviously valid, the inverseimplication is still unsettled. It is known that F -free Berge graphs (withno induced subgraph isomorphic to F ) are perfect when F is, for example,K1;3 "13|, the diamond"14|, the tetrahedron"17|, the bull"2| or thedart"16|."4| A number of interesting results on the SPGC of a di�erent sort thanthe ones mentioned above have been published in the last years, see forexample, "1,3-6,8-11,15|. For k � 3, let Cv2k+1 stand for a cycle on 2k+ 1vertices (including v) with exactly one chord, which is a triangular chord(joining two vertices whose distance on the cycle is two) adjacent to v. LetCv5 mean a cycle on �ve vertices including v with one or two chords adjacentto v.De�nition 1.1 We say G = (V;E) a short chord graph (s.e.g. for short)if for each vertex v 2 V there exists a Cv2k+1 cycle, k � 2. G is said to bea doubly short chord graph if G and G are short chordgraphs (d.s.c.g. forshort).The class of doubly short chord Berge graphs is nonempty. An exampleis shown in Figure 1. It is easy to check that for each vertex v of G thereexists a Cv5 cycle and that there are no induced copies of C5 and C7. Sincethe complement G of G is isomorphic to G, the graph G is a d.s.c.g. and aBerge graph.LLLLLLLLLLL�����������!!!!!!!!!!!aaaaaaaaaaaLLLLLLLLLLL��
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Figure 1.



Zbigniew Lonc 3To prove two theorems, we need hypotheses H1; H2 (clearly,H2 impliesH1).H1. There are no graphs that are simultaneously Berge, p-critical and d.s.c.g.H2. Each Berge and d.s.c.g. is perfect.We use H1 to demonstrate that each Berge graph that is not d.s.c.g. isp erfect, while H2 is su�cient to sette the SPGC. Independently of thesetwo hypotheses, we make use of the Lovasz and Padberg characterizationsof p-critical graphs. In the concluding section, we obtain two more resultsproved by a similar reasoning as in the �rst two theorems. They deal withso-called doubly chordally dense graphs (see De�nition 3.1). The SPGC isagain settled provided it holds for the above class of graphs.2 Proofs of TheoremsTheorem 2.1 Under hypothesis H1, each Berge graph that is not a doublyshort chord graph is perfect.Proof. Suppose the family F of Berge graphs that are not d.s.c.g. andnot perfect is nonempty. Choose G = (V;E) 2 F with the property that ifG0 = (V 0; E0) 2 F then V � V 0. Observe G is p-critical (G is not perfectbut each of its induced subgraph is perfect). Indeed, if not, G would containa p-critical induced proper subgraph GA = (A;EA) which, by hypothesisH1, would belong to F , a contradiction. Since G is not a d.s.c.g., either Gor G contains a vertex v such that there is no cycle Cv2k+1, k � 2. Withoutloosing a generality, assume G is such a graph. Since G is a Berge graph,!(G) > 2. Choose any x 2 V with (x; v) 2 E. Since G is p-critical, V �fxgis the union of � = �(G) disjoint cliques C1; C2; :::C� of size ! = !(G)covering V n fxg (�(G) denotes the size of a largest independent set inG). We may assume v 2 C1 . By Padberg's theorem "12|, exactly !cliques in G contain each vertex of G, particularly vertex v. Not countingC1 , we thus have ! � 1 cliques covering v, the latter implying (in viewof ! > 2) the existence of a vertex b 6= x; b =2 C1 , with (v; b) 2 E. Ifwe delete (v; b) from E, the resulting graph Gvb = (V;E n (v; b)) is stillnot perfect for the Lovasz inequality "7| does not hold for Gvb. In fact,we have V = 1 + !(G) � �(G) > !(Gvb) � �(Gvb) because !(Gvb) = !(G)and �(Gvb) = �(G) the latter being a consequence of the fact that anyindependent set N in Gvb of size � + 1 should contain the vertices x; v; bwith (x; v) 2 E, a contradiction. Namely, if either v or b did not belong toN , then N would be an independent set in G of size �+1, a contradiction.



4 SPGC is true if it holds for allAlso, if x =2 N then N � S�i=1Ci and because N \ Ci � 1 we would have�+ 1 = N � �.Generalizing the last observation Gvb is not perfect, we delete from Eall edges of the form (v; b), where b 2 S�i=2Ci, to conclude the resultinggraf Gv is not perfect. Since v does not any longer belong to !(Gv) = !(G)cliques, because of deletion of a number of edges containing v, Gv cannot bep-critical and consequently must contain a proper subgraph G0 = (V 0; E0)that is p-critical with !0 = !(G0) � 2; �0 = �(G0) � 2. The set V 0 mustcontain vertex v and at least one vertex b 2 S�i=2 Ci because otherwise G'would be a perfect graph as a proper subset of the p-critical graph G.Since v 2 G' , by the mentioned above Padberg's theorem, v is containedin exactly !0 maximal cliques in G0. One of the cliques is C1\V 0. By virtueof !0 � 2, there must be another cligue containing v. Such a clique mustcontain a vertex not belonging to C1 \ V 0. Because of deletion of all edgesof the form (v; b), b 2 S�i=2Ci, the only candidate for such a vertex is x.This implies !0 = 2, showing that G0 = C2k+1 in Gv, the latter being apartial subgraph of G. As a s ubgraph of G, G0 = (V 0; EV 0) is a cycle on2k+ 1 vertices, k � 2, with m chords of the form (v; bi); i = 1; :::;m; whichwe deleted from G when constructing the graph Gv; denote this cycle withm chords by G".If we show this is impossible for any value of m, we shall prove thetheorem. The case m = 1 is easy because the only chord, being not atriangular chord by the choice of v, must "divide" G" (on at least sevenvertices in this instance) on two cycles among which one has to be an oddcycle, a contradiction. Observe the assumption there is no a Cv5 cycle isneeded to obtain a contradiction when m = 2 and G" is a cycle on �vevertices. When G" is a cycle on 2k + 1 vertices with k � 3 and m = 2 (G"has two chords (v; b1) and (v; b2)), then we again arrive at a contradiction.Namely, if the both chords are triangular, then G" contains a chordlesscycle C2l+1; l � 2, whose t wo consequitive sides are (b1; v) and (v; b2).Otherwise, if exactly one of the two chords is triangular, G" must containeither an odd cycle with exatly one triangular chord, or an odd chordlesscycle (both instances cannot occure due to our assumptions).Finally, if none of the chords (v; b1); (v; b2) is triangular, then either atleast one of them is a side of an odd chordless cycle (impossible), or bothare consequitive sides of an odd chordless cycle C of length 2r+ 1 lying "inbetween" two other cycles of G". If r = 1 then G" must contain a cycleCv2l+1 (impossible), while in the case r � 2 the cycle G" must contain theodd cycle C lying in between two even cycles (also impossible).Suppose we have a method M to demonstrate an odd cycle on at least�ve vertices with m or less than m chords, all adjacent to vertex v, cannotexist in G (this is true for m = 1 and m = 2). Using M we show no oddcycle with m+ 1 chords, all adjacent to v, exists in G. Indeed, at least oneof m � 3 chords (v; bi) "divides" G" into two cycles one of which, say C,must be odd of length at least �ve with at most m chords. The existence of



Zbigniew Lonc 5such a cycle C contradicts, however, our method M . 2Theorem 2.2 Under hypothesis H2 , the SPGC holds.Proof. If a Berge graph is a d.s.c.g., then it is perfect by hypothesis H2 .Since H2 implies H1, Theorem 2.1 completes our proof. 23 ConclusionsBy a slight modi�cation of our reasoning, one can obtain two more re-sults.De�nition 3.1 A graph G is said to be chordally dense if for each vertexx and each adjacent to it vertex v there exits a cycle on 2k + 1; k � 2,vertices with all r � 1 chords adjacent to v and such that x and v are twoconsequitive vertices of this cycle. G is said to be doubly chordally dense ifboth G and its complement G is chordally dense.An example of a doubly chordally dense graph is the graph presented inFigure 1.H 01. There are no graphs that are simultaneouslyBerge, doubly chordallydense and p-critical.H 02. Each Berge and doubly chordally dense graph is perfect.Theorem 3.1 Under hypothesis H01, each Berge graph that is not doublychordally dense is perfect.Proof. We argue similarly as in the �rst part of the proof of Theorem 2.1.In particular, we show that either G or G contains vertices v; x such that(x; v) 2 E or (x; v) =2 E and there is no cycle in G(G) on 2k + 1; k � 2,vertices containing x; v as consequitive vertices whose all r � 1 chords areadjacent to v. As previously, we delete from E all edges of the form (v; b),b 2 S�i=2Ci, to conclude the resulting graph is not perfect. Such a graphmust then contain a proper p-critical subgraph G0 containing x; v with w0 =w(G0) = 2, �0 = �(G0) � 2. As a subgraph of G, G0 is an odd cycle whoseall chords are adjacent to v, with x; v being two consequitive vertices of thecycle, a contradiction with the choice of x; v.Theorem 3.2 Under hypothesis H02, the SPGC is true.The proof is the same as the one of Theorem 2.2.



6 SPGC is true if it holds for allReferences[1] V.Chvatal, Star-cutsets and perfect graphs, J.Combin. Theory Ser.B39(1985), 189-199.[2] V.Chvatal and N.Sbihi, Bull-free graphs are perfect, Graphs and Com-bin. 3 (1987), 127-139.[3] V.Chvatal,W.Lenhart and N.Sbihi, Two-colourings that decompose per-fect graphs, J.Combin. Theory Ser.B 49(1990), 1-9.[4] R.B.Hayward, Weakly triangulated graphs, J.Combin. Theory Ser.B39(1985), 200-209.[5] R.B.Hayward, On the P4-structure of perfect graphs. IV. Partnergraphs, J.Combin, Theory Ser.B 48(1990), 135-139.[6] C.T.Hoang, On the sibling-structure of perfect graphs, J.Combin, The-ory Ser.B 49(1990), 282-286.[7] L.Lovasz, A.characterization of perfect graphs, J.Combin, Theory Ser.B13(1972), 95-98.[8] S.E.Markosian, G.S.Gasparian and A.S.Markosian, On a conjecture ofBerge, J.Combin, Theory Ser.B 56(1992), 97-107.[9] H.Meyniel, A new property of critical imperfect graphs and some con-sequences, Europ. J. Combinatorics 8(1987), 313-316.[10] S.Olariu, Wings and perfect graphs, Discrete Mathematics 80(1990),281-296.[11] S.Olariu, On the structure of unbreakable graphs, J.Graph Theory15(1991), 349-373.[12] M.W.Padberg, Perfect zero-one matrices, Math. Programming 6(1974),180-196.[13] K.R.Parthasarathy and G.Ravinda, The strong perfect graph conjec-ture is time for K1;3-free graphs, J.Combin, Theory Ser.B 21(1976), 212-223.[14] K.R.Parthasarathy and G.Ravinda, The validity of the strong per-fect graph conjecture for (K4-e)-free graphs, J.Combin, Theory Ser.B26(1979), 98-100.[15] B.Reed, A semi - strong perfect graph theorem, J.Combin, TheorySer.B 43(1987), 223-240.



Zbigniew Lonc 7[16] L.Sun, Two classes of perfect graphs, J.Combin, Theory Ser.B53(1991), 273-292.[17] A.Tucker, Coloring perfect (K4-e) - free graphs, J.Combin, TheorySer.B 42(1987), 313-318.

This electronic publication and its contents are ccopyright 1995by Ulam Quarterly. Permission is hereby granted to give awaythe journal and it contents, but no one may \own" it. Any andall �nancial interest is hereby assigned to the acknowledged au-thors of the individual texts. This noti�cation must accompanyall distribution of Ulam Quarterly.


