Ulam Quarterly — Volume 3, Number 1, 1995

A Relation between Complexity
and Entropy

James F. Lynch!

Clarkson University
Department of Mathematics and Computer Science

Potsdam, New York 13699-5815

Abstract

We derive two asymptotic formulas relating the Kolmogorov complexity of strings
over a finite alphabet to the entropy of a discrete Markov information source that
generates the strings.
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In [2], Beyer, Stein, and Ulam discussed several notions of complexity of
integers and made a conjecture relating Kolmogorov complexity and infor-
mation theoretic entropy. We will state this conjecture, after summarizing
the basic notions that it refers to. More comprehensive introductions are
[3] and [6] for Kolmogorov complexity, and [1] for information theory.

Let A be an algorithm, i.e. a Turing machine, that transforms binary
strings into binary strings. (The restriction to binary strings is for simplic-
ity; all the definitions and results given here easily extend to strings over
any finite alphabet.) The complezity of a string x relative to A, K4(#), is
the length of the shortest string w such that A(w) = =, or if no such string
exists, 1t is co. Similarly, if A is an algorithm that transforms pairs of binary
strings into binary strings, the conditional complexity of & with respect to
y, Ka(z|y), is the length of the shortest string w such that A(w,y) =z, or
if no such string exists, it is co. As in [2], we will assume A is of this form,
and we will consider conditional complexities K 4(z|n), where n = |z|, the
length of z.

Let S be a discrete 0-memory binary information source with probability(0) =
p and probability(1) = 1 — p. That is, S generates a sequence of Bernoulli
trials whose outcomes are 0 or 1, and for a binary string « of length n with
m 0’s, the probability of z, pr(z), is p(1 — p)"~"™. The entropy H of S is
—plogp — (1 —p)log(l — p). (All our logarithms are base 2.)
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Conjecture 1 (Beyer, Stein, Ulam) For every natural number n, let x4, . ..

be the sequence of all binary strings of length n arranged in order of de-
creasing probability, as given by S. Let k(n) be the least integer such that
Zl<l<k(n)pr( z;) > r for some fired r € (1/2,1). If K4 is normalized so
that

1
k— Z Ka(z;n) =1
1<i<k(n)

when p=1/2 then

1
H o~ s > Kalwln).

() 1<i<k(n)

That is, the most likely strings from A have complexity approximately equal
to the entropy of S.

Before stating our theorems, which are similar to the Conjecture, there
are two observations worth noting. First, the Conjecture is not true for all
A. For example, let A be the identity transformation A(x) = x. Then after
normalization,

1
k— Z Ka(z;n) =1
1<i<k(n)

independently of p, but as is well-known, H 1s a unimodal function of p with
a maximum of 1 at p = 1/2 and minimaof 0 at p = 0 and p = 1. However,
as we will show, the Conjecture is true when A 1s a universal algorithm or
Turing machine. The definition of Kolmogorov complexity usually assumes
A is universal. That is, for any algorithm B, there is a string u that encodes
B’s program for A: for any strings w and y, B(w,y) = A(uw,y) where uw
is the concatenation of u and w. The particular universal algorithm A that
is used is not important since | K 4(#|y)— K a/(x|y)| is bounded for any other
universal algorithm A’ and all z and y.

The second point is that the information source S is a 0-memory source.
Our theorems apply to the more general Markov source. A discrete Markov
binary information source is a finite ergodic Markov chain, say with states
$1,...,8m. From each state there is a transition labelled 0 and another
labelled 1. If the chain 1s in state s; then the 0 transition will be taken with
probability p;, and the 1 transition will be taken with probability 1 —p;. All
other transitions have probability 0. Again for simplicity, we assume our
Markov source S is regular, i.e. aperiodic. Extending our results to periodic
chains is straightforward. S generates a binary string by starting in some
arbitrary fixed state, say s1, and outputting the labels of the transitions
it takes. Let [ay...am] be the stationary distribution of S. Then pr will
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be the probability distribution of strings of some length n generated by S.
Entropy is now defined by

H=— 3" ai(plogpi + (1 — p;)log(1 — p;)).
1<i<m

One final technical point is that we assume each p; is a computable real
number, 1.e. there is an algorithm such that given any natural number /| it
generates the first [ bits in the binary representation of the number.

Theorem 2 For every natural number n, let
E(Ka)= ) Kalzln)pr(x)
z€{0,1}™

be the average complexity of strings of length n. Then

Hn ~ E(K,).
Theorem 3 Let r € (0,1) and k(n) be defined as in the Conjecture. Then

1
Hnrvﬁ Z Ka(z;i|n).

() 1<i<k(n)

Thus, the Conjecture holds for all universal algorithms A and all r € (0, 1),
and the normalization factor is just 1/n.

These theorems follow from some arguments using basic results about
the expectation of random variables (see Feller [5]). For any ¢ = 1,...,m
and binary string z, let X () be the random variable that counts the number
of occurrences of state s; when S generates z, and for 1 <t < |z| let X;(2)
be the indicator random variable whose value 1s 1 if S is in state s; at time
t.

Lemma 4 For every ¢ > 0

1/2

lim pr(|X —a;n| > en*/“logn) = 0.

Proof. Let E(X) be the expectation of X. We first show that
E(X) = a;n + O(logn). (1)

For 1 <t < nlet ql(»t) be the probability that S is in state s; at time ¢{. By
linearity of expectation,

BEX)= > EXx)= Y 4"

1<t<n 1<t<n



10 A Relation between Complexity and Entropy

By Corollary 4.1.5 in Kemeny and Snell [7], there is a constant ¢ < 1 such
that |ql(»t) — a;] < ' for sufficiently large ¢. Therefore there is a constant b
such that for ¢t > blogn, |ql(»t) —a;| < n=% Then

D S S S
1<t<n 1<t<blogn blogn<t<n
= O(logn)+ (n —blogn)(a; + O(n™?))
= a;n+ O(logn).

Next, we show that

E(X?) = aln? + O(nlogn). (2)
Again by linearity,
E(X?) = E(X)+2 > E(XXy)
1<t<n 1<t<u<sn

The second sum on the right can be broken into
Y OEXNX)+ Y BN+ Y E(XX),
1<t<blogn u—t<blogn

where the third sum is over all pairs ¢ < u not included in the first two
sums.

= O(nlogn)+ O(nlogn) + (n?/2 — O(nlogn))(a; + O(n™?))*
= ain?/2+4 O(nlogn).

To finish the proof, by Chebyshev’s inequality,

pr(|X — ain| > en'/?logn)
E(X?) — B(X)?
?n(logn)?
ain? + O(nlogn) — (a?n? + O(nlogn))

= Znllogn)? by Equations (1) and (2)

— Qasn— .

O

For every natural number n, let L,, be the set of all strings of length n
such that when generated by S, each state s; occurs between a;n—n'/?logn
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and a;n+nt/? log n times, and the number of 0 transitions from s; is between
a;p;n — nt/2 logn and a;p;n + nt/2 logn.

Lemma 5 We have

lim pr(Ly) = 1.

n—oQ

Proof. By Lemma 4 we know that for almost all strings generated by 5,
there are between a;n — n'/?logn/2 and a;n + n'/*logn/2 occurrences of
s; for e = 1,...,m. Fixing i, we use the Lemma again, applying it to the
chain 7" whose states are oy and o7 and matrix of transitions 1s

) ®)

pi 1—p

Each time S leaves state s;, T" will perform one transition, going to og or o1
depending on whether S takes the 0 or 1 transition from s;. Clearly (3) is
also the stationary distribution, so after running 7" m steps, with probability
asymptotic to 1, there will have been between p;m—m!/?log m/4 and p;m+
m'/?log m/4 occurrences of og. Alternatively, we could use the fact that the
transitions from s; are Bernoulli trials with probability p; for success, i.e. a
0 transition. Then the same conclusion follows from Chebyshev’s inequality
or the DeMoivre-Laplace limit theorem (see Feller [5]). Since in the chain S
we can assume there were between a;n —n'/*logn/2 and a;n+n'/*logn/2
occurrences of s;, with probability asymptotic to 1, there will be between
a;pin — nl/2 logn and a;p;n + nl/2 logn 0 transitions out of s;. 0O

Lemma 6 There is a constant ¢ such that for all sufficiently large n and
all x € Ly,

2—cn1/210gn—Hn < pr(x) < 20n1/210gn—Hn. (4)

Proof. For z € L,

pr(e)= [ pi"(1=p)0=rm o I pi(1—po)®
1<i<m 1<i<m

where all |¢;| and |d;| are O(n'/?logn). Therefore

| Z e logps + dilog(1l — p;)| < cnl/zlogn
1<i<m

for some ¢, and the Lemma follows. a
Proof of Theorem 2. We will show that

Hn —o(n) <E(K4) < Hn+ o(n).
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To prove the lower bound, suppose on the contrary that E(K4) < an in-
finitely often for some a < H. Then by Markov’s inequality, the set C, of
strings of complexity < (H + a)n/2 has probability > (H —a)/(H + a) for
infinitely many n. Since pr(Ly) ~ 1, pr(Cp, N Ly) > (H —a)/(2(H + a)) in-
finitely often. Therefore by Lemma 6, |Cy,| = 9(2_0”1/210g”+H”) infinitely
often. But the number of strings of complexity < (H 4 a)n/2 is bounded
by 2(H+an/2 — 0(2_0”1/21%”"’}1”), contradiction.

We will use the following encoding to prove the upper bound. Let = €
{0,1}™. The first bit of the encoding indicates whether « € L,, or not. If
not, then the rest of the encoding is simply #, giving an encoding of length
n+1. If z € L, say x is the uth string in L, , where we assume some fixed
effective ordering on L,,. One possible ordering is obtained by simulating S
for n steps in all 2" different ways, and enumerating only those generated
strings that are in L,,. (This is where we use the assumption that the p;’s are
computable reals.) The rest of the encoding of # is the binary representation
of u. By Lemma 6, log |L,| < Hn + o(n), so Hn 4 o(n) bits suffice for the
encoding of . By Lemma 5, pr(L,) ~ 1, so E(K4) < Hn + o(n). a

Proof of Theorem 3. Let M, be the set of all # € {0,1}" that sat-
isfy Equation (4). Then L, € M,. By Lemma 5, k(n) € M,. Let
h(n) be the least h such that h € M, and Dy, = {x1,...,Th(n)-1}, En =
{Znnys - s Zpny} Clearly E,, € M,,. Since D,, N M,y = 0, pr(Dy) = of1),
and since pr(D, U E,) > r, pr(Dy,) = o(pr(Ey)). Therefore |D,| = o(| Ey|)
a fortiori because the probability of every string in D, is at least as large as
the probability of any string in E,,. Then |E,| ~ k(n), and since all strings
in E, satisfy Equation (4), the lower and upper bounds can be proven using
arguments similar to those in the previous proof. a

The encoding used in the proofs of the upper bounds in the Theorems is
simple, but there is no obvious way to decode a string efficiently. Simulating
S for n steps in all possible ways in order to determine that the uth string
in L, is & takes exponentially many steps. We now give an encoding that
still uses only Hn + o(n) bits for every string in L, , but can be decoded in
polynomial time.

Take x € L,, and for i = 1,...,m let r; be the number of occurrences
of s; and t; be the number of occurrences of 0 transitions from s; when

z 1s generated by S. The ( :Z ) sequences in {0, 1} with ¢; zeros are
2

ordered lexicographically. Say that the sequence of 0 transitions from s;
made by S in generating x is the w;th in the ordering. Then the entire
encoding of # is the concatenation of 1 (indicating z € L,) followed by
binary representations of r;, ¢;, and u; for ¢ = 1,...,m. To permit easy
decoding, we use exactly [logn] bits to represent each r; and t;. Clearly
this is sufficient. We encode each u; with —a;(p;logp; + (1 — p;)log(1 —
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pi))n +n/?(logn)? bits. This is sufficient because

ri
logu; < log(t )

—a;(pilogp; + (1 — p;) log(1 — pi))n + nl/z(log n)2

IN

since € L,,. Therefore the total length of the encoding is still Hn—+o(n).

Decoding can be done in polynomial time. The only difficulty is deter-
mining which string with ¢; zeros in {0, 1}"* is number w; in the lexicographic
ordering. Let y = y1 ...y,, be this string and b be the least index such that
yp = 1. Then b < ¢; + 1 and b is the largest integer such that

r;—b .
UZS Z (7“2'—.1752'—1).

j=ri—t;—1

J
r; — ti -1
polynomial time (using binary notation), and thus b can be found in poly-
nomial time. Having found b, the process is iterated to find the next 1 bit
of y, and repeated until all of y is determined.

An open problem raised by the Conjecture and Theorems is to broaden
the class of algorithms for which the Theorems hold. The report [2] contains
several very simple number theoretic encodings of integers that seem to
satisfy the asymptotic formulas in the Theorems.

Since r; < n, each term ( ) in the sum can be computed in
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