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8 A Relation between Complexity and EntropyConjecture 1 (Beyer, Stein, Ulam) For every natural number n, let x1; : : : ; x2nbe the sequence of all binary strings of length n arranged in order of de-creasing probability, as given by S. Let k(n) be the least integer such thatP1�i�k(n) pr(xi) > r for some �xed r 2 (1=2; 1). If KA is normalized sothat 1k(n) X1�i�k(n)KA(xijn) = 1when p = 1=2 then H � 1k(n) X1�i�k(n)KA(xijn):That is, the most likely strings fromA have complexity approximately equalto the entropy of S.Before stating our theorems, which are similar to the Conjecture, thereare two observations worth noting. First, the Conjecture is not true for allA. For example, let A be the identity transformation A(x) = x. Then afternormalization, 1k(n) X1�i�k(n)KA(xijn) = 1independently of p, but as is well-known,H is a unimodal function of p witha maximum of 1 at p = 1=2 and minima of 0 at p = 0 and p = 1. However,as we will show, the Conjecture is true when A is a universal algorithm orTuring machine. The de�nition of Kolmogorov complexity usually assumesA is universal. That is, for any algorithm B, there is a string u that encodesB's program for A: for any strings w and y, B(w; y) = A(uw; y) where uwis the concatenation of u and w. The particular universal algorithm A thatis used is not important since jKA(xjy)�KA0(xjy)j is bounded for any otheruniversal algorithm A0 and all x and y.The second point is that the information source S is a 0-memory source.Our theorems apply to the more general Markov source. A discrete Markovbinary information source is a �nite ergodic Markov chain, say with statess1; : : : ; sm. From each state there is a transition labelled 0 and anotherlabelled 1. If the chain is in state si then the 0 transition will be taken withprobability pi, and the 1 transition will be taken with probability 1�pi. Allother transitions have probability 0. Again for simplicity, we assume ourMarkov source S is regular, i.e. aperiodic. Extending our results to periodicchains is straightforward. S generates a binary string by starting in somearbitrary �xed state, say s1, and outputting the labels of the transitionsit takes. Let [a1 : : : am] be the stationary distribution of S. Then pr will



James F. Lynch 9be the probability distribution of strings of some length n generated by S.Entropy is now de�ned byH = � X1�i�m ai(pi log pi + (1� pi) log(1� pi)):One �nal technical point is that we assume each pi is a computable realnumber, i.e. there is an algorithm such that given any natural number l, itgenerates the �rst l bits in the binary representation of the number.Theorem 2 For every natural number n, letE(KA) = Xx2f0;1gnKA(xjn)pr(x)be the average complexity of strings of length n. ThenHn � E(KA):Theorem 3 Let r 2 (0; 1) and k(n) be de�ned as in the Conjecture. ThenHn � 1k(n) X1�i�k(n)KA(xijn):Thus, the Conjecture holds for all universal algorithms A and all r 2 (0; 1),and the normalization factor is just 1=n.These theorems follow from some arguments using basic results aboutthe expectation of random variables (see Feller [5]). For any i = 1; : : : ;mand binary string x, letX(x) be the random variable that counts the numberof occurrences of state si when S generates x, and for 1 � t � jxj let Xt(x)be the indicator random variable whose value is 1 if S is in state si at timet.Lemma 4 For every c > 0limn!1 pr(jX � ainj > cn1=2 logn) = 0:Proof. Let E(X) be the expectation of X. We �rst show thatE(X) = ain +O(logn): (1)For 1 � t � n let q(t)i be the probability that S is in state si at time t. Bylinearity of expectation,E(X) = X1�t�nE(Xt) = X1�t�nq(t)i :



10 A Relation between Complexity and EntropyBy Corollary 4.1.5 in Kemeny and Snell [7], there is a constant " < 1 suchthat jq(t)i � aij < "t for su�ciently large t. Therefore there is a constant bsuch that for t > b logn, jq(t)i � aij < n�2. ThenX1�t�nq(t)i = X1�t�b logn q(t)i + Xb logn<t�nq(t)i= O(logn) + (n� b logn)(ai +O(n�2))= ain+ O(logn):Next, we show that E(X2) = a2in2 +O(n logn): (2)Again by linearity,E(X2) = X1�t�nE(Xt) + 2 X1�t<u�nE(XtXu):The second sum on the right can be broken intoX1�t�b lognE(XtXu) + Xu�t�b lognE(XtXu) +XE(XtXu);where the third sum is over all pairs t < u not included in the �rst twosums. = O(n logn) +O(n logn) + (n2=2�O(n logn))(ai +O(n�2))2= a2in2=2 +O(n logn):To �nish the proof, by Chebyshev's inequality,pr(jX � ainj � cn1=2 logn)� E(X2) � E(X)2c2n(logn)2= a2in2 + O(n logn)� (a2in2 + O(n logn))c2n(logn)2 by Equations (1) and (2)! 0 as n!1. 2For every natural number n, let Ln be the set of all strings of length nsuch that when generated by S, each state si occurs between ain�n1=2 logn



James F. Lynch 11and ain+n1=2 logn times, and the number of 0 transitions from si is betweenaipin� n1=2 logn and aipin+ n1=2 logn.Lemma 5 We have limn!1 pr(Ln) = 1:Proof. By Lemma 4 we know that for almost all strings generated by S,there are between ain � n1=2 logn=2 and ain + n1=2 logn=2 occurrences ofsi for i = 1; : : : ;m. Fixing i, we use the Lemma again, applying it to thechain T whose states are �0 and �1 and matrix of transitions is� pi 1� pipi 1� pi � : (3)Each time S leaves state si, T will perform one transition, going to �0 or �1depending on whether S takes the 0 or 1 transition from si. Clearly (3) isalso the stationary distribution, so after running T m steps, with probabilityasymptotic to 1, there will have been between pim�m1=2 logm=4 and pim+m1=2 logm=4 occurrences of �0. Alternatively, we could use the fact that thetransitions from si are Bernoulli trials with probability pi for success, i.e. a0 transition. Then the same conclusion follows from Chebyshev's inequalityor the DeMoivre-Laplace limit theorem (see Feller [5]). Since in the chain Swe can assume there were between ain�n1=2 logn=2 and ain+n1=2 logn=2occurrences of si, with probability asymptotic to 1, there will be betweenaipin� n1=2 logn and aipin+ n1=2 logn 0 transitions out of si. 2Lemma 6 There is a constant c such that for all su�ciently large n andall x 2 Ln, 2�cn1=2 logn�Hn � pr(x) � 2cn1=2 logn�Hn: (4)Proof. For x 2 Ln,pr(x) = Y1�i�m paipini (1� pi)ai(1�pi)n � Y1�i�m pcii (1� pi)diwhere all jcij and jdij are O(n1=2 logn). Thereforej X1�i�m ci log pi + di log(1� pi)j � cn1=2 lognfor some c, and the Lemma follows. 2Proof of Theorem 2. We will show thatHn� o(n) � E(KA) � Hn+ o(n):



12 A Relation between Complexity and EntropyTo prove the lower bound, suppose on the contrary that E(KA) < an in-�nitely often for some a < H. Then by Markov's inequality, the set Cn ofstrings of complexity � (H + a)n=2 has probability � (H � a)=(H + a) forin�nitely many n. Since pr(Ln) � 1, pr(Cn \Ln) � (H � a)=(2(H + a)) in-�nitely often. Therefore by Lemma 6, jCnj = 
(2�cn1=2 logn+Hn) in�nitelyoften. But the number of strings of complexity � (H + a)n=2 is boundedby 2(H+a)n=2 = o(2�cn1=2 logn+Hn), contradiction.We will use the following encoding to prove the upper bound. Let x 2f0; 1gn. The �rst bit of the encoding indicates whether x 2 Ln or not. Ifnot, then the rest of the encoding is simply x, giving an encoding of lengthn+1. If x 2 Ln, say x is the uth string in Ln, where we assume some �xede�ective ordering on Ln. One possible ordering is obtained by simulating Sfor n steps in all 2n di�erent ways, and enumerating only those generatedstrings that are in Ln. (This is where we use the assumption that the pi's arecomputable reals.) The rest of the encoding of x is the binary representationof u. By Lemma 6, log jLnj � Hn+ o(n), so Hn+ o(n) bits su�ce for theencoding of x. By Lemma 5, pr(Ln) � 1, so E(KA) � Hn+ o(n). 2Proof of Theorem 3. Let Mn be the set of all x 2 f0; 1gn that sat-isfy Equation (4). Then Ln � Mn. By Lemma 5, k(n) 2 Mn. Leth(n) be the least h such that h 2 Mn and Dn = fx1; : : : ; xh(n)�1g, En =fxh(n); : : : ; xk(n)g. Clearly En � Mn. Since Dn \Mn = ;, pr(Dn) = o(1),and since pr(Dn [En) > r, pr(Dn) = o(pr(En)). Therefore jDnj = o(jEnj)a fortiori because the probability of every string in Dn is at least as large asthe probability of any string in En. Then jEnj � k(n), and since all stringsin En satisfy Equation (4), the lower and upper bounds can be proven usingarguments similar to those in the previous proof. 2The encoding used in the proofs of the upper bounds in the Theorems issimple, but there is no obvious way to decode a string e�ciently. SimulatingS for n steps in all possible ways in order to determine that the uth stringin Ln is x takes exponentially many steps. We now give an encoding thatstill uses only Hn+ o(n) bits for every string in Ln, but can be decoded inpolynomial time.Take x 2 Ln, and for i = 1; : : : ;m let ri be the number of occurrencesof si and ti be the number of occurrences of 0 transitions from si whenx is generated by S. The � riti � sequences in f0; 1gri with ti zeros areordered lexicographically. Say that the sequence of 0 transitions from simade by S in generating x is the uith in the ordering. Then the entireencoding of x is the concatenation of 1 (indicating x 2 Ln) followed bybinary representations of ri, ti, and ui for i = 1; : : : ;m. To permit easydecoding, we use exactly dlogne bits to represent each ri and ti. Clearlythis is su�cient. We encode each ui with �ai(pi log pi + (1 � pi) log(1 �



James F. Lynch 13pi))n + n1=2(logn)2 bits. This is su�cient becauselogui � log riti !� �ai(pi logpi + (1� pi) log(1� pi))n + n1=2(logn)2since x 2 Ln. Therefore the total length of the encoding is stillHn+o(n).Decoding can be done in polynomial time. The only di�culty is deter-mining which string with ti zeros in f0; 1gri is number ui in the lexicographicordering. Let y = y1 : : : yri be this string and b be the least index such thatyb = 1. Then b � ti + 1 and b is the largest integer such thatui � ri�bXj=ri�ti�1� jri � ti � 1 � :Since ri � n, each term � jri � ti � 1 � in the sum can be computed inpolynomial time (using binary notation), and thus b can be found in poly-nomial time. Having found b, the process is iterated to �nd the next 1 bitof y, and repeated until all of y is determined.An open problem raised by the Conjecture and Theorems is to broadenthe class of algorithms for which the Theorems hold. The report [2] containsseveral very simple number theoretic encodings of integers that seem tosatisfy the asymptotic formulas in the Theorems.Bibliography[1] N. Abramson, Information Theory and Coding, McGraw-Hill, NewYork (1963).[2] W. A. Beyer, M. L. Stein, and S. M. Ulam, The notion of complexity,Los Alamos Report LA-4822, U. S. Dept. of Commerce, Spring�eld,VA (1971).[3] G. J. Chaitin, On the Length of Programs for Computing Finite BinarySequences, J. ACM 13 (1966), 547-569.[4] G. J. Chaitin, A theory of program size formally identical to informa-tion theory, J. ACM 22 (1975), 329-340.[5] W. Feller, An Introduction to Probability Theory and its Application,3rd ed., Wiley, New York (1967).[6] A. Kolmogorov, Logical basis for information theory and probabilitytheory, IEEE Trans. Information Theory IT-14 (1968), 662-664.
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