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1 Introduction

This paper arises out of the Note 2 in [6]. First major generalization
of the Fibonacci Sequence was formulated and studied by Horadam in his

papers [2, 3, 4] He defined {W,,} = {W,(a,b;p,q)} given by
W, = an—l - an—Z (77, > 2)

with initial values,

Wo=a and Wi =0b.

Binet’s formula and the exponential generating function E(z) of {W,} are
respectively given by
la”™ — mpB”

W = 2d

and
1e%® — meP®

E(x) = — od

where «, 8 are the distinct roots of 2? —pzr +¢ = 0 and {, m and d are given

by

l=2(b—af), m=2(b—aa)andd=o— 3 =+/p>—49 (1.1)
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It is clear that the Fibonacci Number Sequence {F,} is given by
Fo=wW,{0,1;1,-1}.

The exponential generating function Fg(z) of {F,} is given by

e1T _ eﬁlx

V5

where ay, ) are the distinct roots of 2 —x — 1 = 0. In [1], Elmore uses

(1.2) to formulate his generalization of F,. He defines B, (z) = Eén)(l‘), SO
that

Eo(z) = (1.2)

n, o1 _ An e
e e s ), (1.3)

En(l‘) = \/5 >

Note that F,(0) = F,.
Taking «, 8 as distinct roots of 2? — pr + ¢ = 0 and using a similar
process, we define

aled® — 671 eﬁx

Erp(x) = 7

where
d=a—f

We easily see that

E*n($) = pE*n—l(x) - qE*n—Z(x)~

Further
B (0) = F~,,
with
Fo=0, F*1 =1,
but

F; :PF;—1 - qF;—z

Walton and Horadam [8] extended Elmore’s results by obtaining another

generalization of the Fibonacci Sequence from the generating function of
Wi (a,b;1,—1). They start with

Hy(z) = L [leaix — meﬁix]

25
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where [, m and d are as defined in (1.1) and then define
Ha(z) = Ho'"(z)
so that )
H,(z) = m [lozi"eaix — mﬁi”eﬁix] (n>1). (1.4)
Note from (1.1) that for ¢« = 0 and & = 1, (1.4) reduces to (1.3). Also

observe that
H,(0) = —= [l — mB;"] = Wy (a,b,;1,-1),
so that for a = 0,0 =1,
H,(0) = F.
We use Generalized Circular Functions to achieve two more generalizations
of the Fibonacci Sequence.

2 Generalized circular functions

Let 7 > 1 be any fixed positive integer. The Generalized Circular Func-
tions N, ;(t) and M, ;(t) are defined as

O ynrtj
Ny (1) = —, j=01,...,r=—1 2.1
]() HZ:%(RT—F_])' ( )
and
0 tnr+J
Z . j=0,1,...,r—1 (2.2)
— nr—i—j'

Observe that Ny o(t) = e', Noo(t)cosht, Noi(t) = sinht and M o(t) =
e~!, M o(t) = cost and finally M> 1 (¢) = sint. Mikusinski [5] studied these
functions and proved some of their basic properties. The notation and some
of the results used here are found in [7]. Differentiating (2.1) and (2.2) term
by term, it is clear that

NP Nej—p(t), 0<p<j
Ny () = {Nmﬂ_p(t), 0<j<p<r (2:3)

and

)y — ] Mrj—p(t), 0<p<y
MY/ (t) = . 2.4
( ) { _Mr,r+j—p(t)a 0 S J<p S r ( )
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In particular, note from (2.3) and (2.4) that

NTo(t) = Ny j(t
M e } (2:5)

so that, in general,

for n > 1.

3 Definition and preliminary results

Definition 3.1 Let r > 1 be a fized integer and j = 0,1,...,r— 1. Let

1 * *

Sjolz) = 24 UN,;(a"x) —mN,;(§"2),] (3.1)
where o, B are distinct roots of > —pr +q =10, o* = /7, 3% = Y7 and
l,m and d are as defined in (1.1).

Note that
a+fB=p and of=gq. (3.2)

Now, define a sequence of Generalized Trigonometric Fibonacci Functions

{S; n(2)} as follows:
Sja(x) = 55 o),

and, in general,
Sjn(z) = S](»%T)(x), n> 1.
Then from (2.6) and (3.1) we get,

55.1(2) = 5 BN, j(a2) = mAN; (2],

Siale) = 5 102 Noj (") = m? N, (57 0)],

and, in general,

Sjn(z) = 21_d la" Ny j(a"z) — mB" N, ; (f*x)], n>1 (3.3)
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Reduction to Fibonacci sequence

Observe from (2.1) that

Hence, it is clear that
Son(2) = Pa(z)

where P, () is as defined in (3.4) of [6]. Forp=1,¢=—1,r=1and j =0,
Sj n(2) reduces to Walton and Hordam’s generalized Fibonacci Function
Hy(z) as defined in (4.1) of [8]. If, in addition to the above particular
values, ¢ = 0 and b = 1, then S; () reduces to Elmore’s function E,(z).
Finally, if in addition, # = 0 then S; ,9z) reduces to F,.

For typographical convenience, we write S, (z) for S; ,(z) in the follow-
ing sections.

Recurrence relation for S,(z).
Sy, () satisfies the following recurrence relation

Sp(x) = pSp_1(®) — ¢Sn_2(2). (3.4)
Proof:
RHS o [loz”_le' (a*z) — mﬁ”_le (6*1‘)]
= L [la"=2N, j(a*x) — mpB" 2N, ;(#*z)]
= 57 U 2N, (") [pa — q] = mBP PN, ; (5 x)[pB — 4]} -

As «, 3 are the distinct roots of 2% — pz + ¢ = 0, we have pa — ¢ = o and
pf — q = 32, using which we easily get the result.

Some preliminary results
(A) Binets’s Formula: Sy, () is given by

Sa(@) = — [(S1(x) = BS0(2))a” + (aSo(x) — S1(2))"].

U=

(B) Generating Function S(t) and Sy () is given by

o(x) — pSo()t + S1(x)t
1— pt+ qt2

sy =3 Su(ayr = 3
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(C) Exponential Generating Function E(¢) for S,(x) is given by

[(S1(x) = BSo(x))e™” = (Si(x) — aSo(x))e™] .

Ul —

n

E(t) _ Z Sn(l")t” _
(D)

(¥)

- _ Snya(x) = S1(x) = (p = D[Snq1(®) = So()]
nz_:o Sn(®) = p—gq—1

All the above results are easily proved by using (3.4) and by noting that
a, B are the roots of z? — pr 4+ ¢ = 0.

4 Various identities for S,(z)
Again, for the sake of convenience, we write:
To(l, oy 2) for la”™ N, ; (o™ z)
and
T, (m, §; z) for mg" N, ; (5% ).
Note that with this notation

1

Snl) = () = 5

[T, a;2) = Ty (m, 5 2)] .
The following identities correspond to identities (4.2) to (4.8) in [6].

_Tn l,OZ;l‘ Tn l’ N
Sﬂ—l(l’)SnH(ﬂL‘)—Szn(x): ( 4; (,p )’

Sn(2)E 1 (@) — ¢Sn—1(2) B (2) =

1 ax T
ﬁ [6 n+r(laa;x) - eﬁ Tn+r(maﬁ; U)] )

where E () is Elmore’s Function as defined in section 1.

1
S () By (0)= 4801 () B (2) = o [ Ty (L s ) = € Ty (m, 2]
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S2(2) — 457y (2) = = [0 T2 (1 as2) — B2 (m, B )]
S7 (@) = 2871 (@) = o5 [T as0) = Tim, B 2)]

Sn—k1(2)Snprs1(2) = Shpi(2) =

1

— 5 -k as )T (m, i 2)] (o = 512,

S () Sptig1 (€) = Sk Snthti41(2) =

1

WTH(L o] l‘)Tn(m, 3; l‘)(ak _ Bk)(ak+l+1 . 6k+l+1).

All the above identities are proved in a way similar to that in [6]. The proofs
are therefore omitted. Observe that for j = 0, all the above identities are
reduced to corresponding identities in [6], and in turn to the corresponding
ones in [8] for p = 1,¢ = —1,» = 1 and j = 0. These, in turn, reduce to
the corresponding identities for the Fibonacci Sequence for the particular
values indicated in Section (3.2).

5 Associated generalized trigonometric Fibonacci sequence

The Associated Fibonacci Sequence, denoted by {F}, is defined by the
following recurrence relation:

Fr=—F  +F_, nx2,
with the initial values
Fy=0and F} = —1.
The first few terms of this sequence are
0,—1,1,-2,3,-5,8,—13.
It is easily proved by mathematical induction that

F* = (=1)"F,.

n
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Note that if the roots of ? + x — 1 = 0 are af and 3], then a? = —a; and
B} = —p1. Binet’s formula for F} is easily obtained as:
Fr = (=1)"F,
— (ED"er-(=D"7
5
. ar—py
NG

Note that
Fr=w,(0,-1;-1,-1).

One similarly defines the Associated Extended Fibonacei Sequence {W, }
by the relation

la" —mp"”

*:_1n n =
Wo = (=D"W, 5d

Then, it is easily proved that W satisfies the recurrence relation
W =-—pWo 1 —qW; s, n>2
with
Wi =a and W] =—b.

In other words W = (a, —b; —p, q).

We now define the Associated Generalized Trigonometric Fibonacci Se-
quence S7 (x). Let » > 1 be a fixed integer and j = 0,1,...,7 — 1. Let,

" 1

0= g 1M (a7e) = mMy  (572)] (5.1)

where «, # are distinct roots of 22 — pz 4+ ¢ = 0, o* = /", g* = g1/" and

[,m and d are as defined in (1.1). Now define {S7  (z)} as follows:
@) = 57 (@),
5 alw) = 557 (@),
and, in general,
Sin(a) = 575" (@), n> 1.

Then, from (2.6) and (5.1), we get

1
jale) = og [HlaMyj(a”e) + mfM, ; (57 2)],
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1
Sio(w) = 2 [—1a® M, (o z) +mfB® M,,; (5" x)]

and, in general,

_1)”
2d

S;n(x) = ( [—la" M, (e x) —mB" M, ; (§"2)], n>1

Ifp=1,¢=—-1,7=0 and r = 1, we have, from (5.2),

56‘,”(1‘) = Q—TldL [loz”e‘” — mﬁ”e‘ﬁx]
= (=1)"Hn(-2),
where Hp(z) is Walton and Horadam’s Generalized Fibonacci Sequence as

defined in (4.1) of [8].
Now Observe from (2.2) that

0, j#0,
MTV] (0) = { 1 s
y )=
Hence, from (5.2), we get
Sia0) = G- llo” —mp]
= [ — o)
= Wr.

n

Finally,if p=1,¢g=—-1,r=1and a =0, b = 1, then we have [ = m = 2
and d = /5. Hence we get,

—1)"(a™—p"
* _
SO,n V5

= F].

6 Various results for S, (z)

We now list below various identities for S]’f‘yn(x) which are parallel to
those in sections (3.3), (3.4). Proofs also go parallel to those for S; () and
hence are omitted. We write Sj(x) for ST (z).

(1) S (x) satisfies the following recurrence relation:

Sp(x) = —=pS,_1 — ¢S, 5.
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In what follows o', ' are the roots of #%+px+¢ = 0. Obviously
ol = —aand gl = —3.

(2) Binet’s Formula for S} () is given by

Su(@) = [(5’53(1‘) = S ()’ + (57 (x) — oS5 (2)) 6"

S

(3) Generating Function S*(¢) of Sk (x) is given by

N ey ygn _ S6(@) +pSE(e)(t) + S (2)(t)
=) S = e

(4) Exponential Generating Function E*(¢) for S (x) is given by

00 ()" —S*(x l*l‘ealt *l‘—al*xeﬁlt
Py = 32 SO _ 810475+ (5i(e) oS

o D[S0 (@) + S5@)] + 51 (@) = g ()
ZS : ptg+1 -

In what follows, we write, for fixed integer r > 1, T*({, o; ) for

la” M, ;(«*z) and T; (m, 3; x) for m@* M, ; (5*z).

(7)
S (8T () — ﬁ%mz—%ﬁMMMﬁmww»

Sp(e)Ep (@) + 45,1 (2) Ej () =

_1\n
( 2d) [ Of@'T;_l_s(l @, $) - eﬁxT;+s( 6a $)] .
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(9)
Sp(W)ET 1 (v) + ¢S, (W) ES(v) =
(_21d)n [eavT;+s(la a3 U) - eﬁvT;+s(ma Ba u] .
(10)
S2(0) — 4821 () = 7 [0 T (L) — 97 T, )]
(11)
S;Z(x) — %S (x) = iid [T;Z(l, a;x) — T;z(m, 3; J:)] )
(12)
S;:—k+1(73)5;:+k+1(1’) - Sﬁ-l(l’) =
1
142 [ ;—k+1(1a0f§$)T;—k+1(maﬁ§ l’)] (ak - 5k)2~
(13)
SZ(l’)S;HH(l’) - S;—k(l’)5:2+k+l+1(l°) =
Sl as )5 Bt = ) (@t — e,

All the above identities are reducible to those for W), and then,
in turn , for F.
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