
Ulam Quarterly { Volume 3, Number 1, 1995Two GeneralizedTrigonometric Fibonacci SequencesS.P. PetheFlat No. 1, Premsagar Housing SocietyMahatma Nagar, Road D-2Nasik - 422 007, INDIAandR.M. FernandesGoa University, TaligaoDepartment of MathematicsGoa - 403 202, INDIA1 IntroductionThis paper arises out of the Note 2 in [6]. First major generalizationof the Fibonacci Sequence was formulated and studied by Horadam in hispapers [2, 3, 4] He de�ned fWng = fWn(a; b; p; q)g given byWn = pWn�1 � qWn�2 (n � 2)with initial values, W0 = a and W1 = b:Binet's formula and the exponential generating function E(x) of fW 0ng arerespectively given by Wn = l�n �m�n2dand E(x) = le�x �me�x2d ;where �; � are the distinct roots of x2�px+ q = 0 and l;m and d are givenby l = 2(b� a�); m = 2(b� a�) and d = �� � =pp2 � 49 (1.1)



16 Two Generalized Trigonometric Fibonacci SequencesIt is clear that the Fibonacci Number Sequence fFng is given byFn = Wnf0; 1; 1;�1g:The exponential generating function E0(x) of fFng is given byE0(x) = e�1x � e�1xp5 (1.2)where �1; �1 are the distinct roots of x2 � x � 1 = 0. In [1], Elmore uses(1.2) to formulate his generalization of Fn. He de�nes En(x) = E(n)0 (x), sothat En(x) = �1ne�1x � �n1 e�1xp5 (n � 1): (1.3)Note that En(0) = Fn.Taking �; � as distinct roots of x2 � px + q = 0 and using a similarprocess, we de�ne E�n(x) = �ne�x � �ne�xdwhere d = �� �We easily see that E�n(x) = pE�n�1(x)� qE�n�2(x):Further E�n(0) = F �n;with F �0 = 0; F �1 = 1;but F �n = pF �n�1 � qF �n�2:Walton and Horadam [8] extended Elmore's results by obtaining anothergeneralization of the Fibonacci Sequence from the generating function ofWn(a; b; 1;�1). They start withH0(x) = 12p5 �le�ix �me�ix�



S.P. Pethe and R.M. Fernandes 17where l;m and d are as de�ned in (1.1) and then de�neHn(x) = H0(n)(x)so that Hn(x) = 12p5 �l�ine�ix �m�ine�iX� (n � 1): (1.4)Note from (1.1) that for a = 0 and b = 1, (1.4) reduces to (1.3). Alsoobserve that Hn(0) = 12p5 [l�in �m�in] = Wn(a; b; ; 1;�1);so that for a = 0; b = 1, Hn(0) = Fn:We use Generalized Circular Functions to achieve two more generalizationsof the Fibonacci Sequence.2 Generalized circular functionsLet r � 1 be any �xed positive integer. The Generalized Circular Func-tions Nr;j(t) and Mr;j(t) are de�ned asNr;j (t) = 1Xn=0 tnr+j(nr + j)! ; j = 0; 1; : : : ; r � 1 (2.1)and Mr;j(t) = 1Xn=0 (�1)ntnr+j(nr + j)! ; j = 0; 1; : : :; r � 1 (2.2)Observe that N1;0(t) = e1; N2;0(t) cosh t; N2;1(t) = sinh t and M1;0(t) =e�t; M2;0(t) = cos t and �nallyM2;1(t) = sin t. Mikusinski [5] studied thesefunctions and proved some of their basic properties. The notation and someof the results used here are found in [7]. Di�erentiating (2.1) and (2.2) termby term, it is clear thatN (p)r;j (t) = � Nr;j�p(t); 0 � p � jNr;r+j�p(t); 0 � j < p � r (2.3)and M (p)r;j (t) = � Mr;j�p(t); 0 � p � j�Mr;r+j�p(t); 0 � j < p � r (2.4)



18 Two Generalized Trigonometric Fibonacci SequencesIn particular, note from (2.3) and (2.4) thatN rr;j(t) = Nr;j(t)M rr;j(t) = �Mr;j(t) � (2.5)so that, in general, Nnrr;j(t) = Nr;j (t)Mnrr;j(t) = (�1)nMr;j(t) � (2.6)for n � 1: 3 De�nition and preliminary resultsDe�nition 3.1 Let r � 1 be a �xed integer and j = 0; 1; : : : ; r� 1: LetSj;0(x) = 12d [lNr;j(��x)�mNr;j(��x); ] (3.1)where �; � are distinct roots of x2 � px+ q = 0, �� = �1=r; �� = �1=r andl;m and d are as de�ned in (1.1).Note that �+ � = p and �� = q: (3.2)Now, de�ne a sequence of Generalized Trigonometric Fibonacci FunctionsfSj;n(x)g as follows: Sj;1(x) = Srj;0(x);Sj;2(x) = S2rj;0(x);and, in general, Sj;n(x) = S(nr)j;0 (x); n � 1:Then from (2.6) and (3.1) we get,Sj;1(x) = 12d [l�Nr;j(��x)�m�Nr;j (��x)] ;Sj;2(x) = 12d �l�2Nr;j (��x)�m�2Nr;j(��x)� ;and, in general,Sj;n(x) = 12d [l�nNr;j(��x)�m�nNr;j (��x)] ; n � 1: (3.3)



S.P. Pethe and R.M. Fernandes 19Reduction to Fibonacci sequenceObserve from (2.1) that Nr;j(0) = � 0; j 6= 01; j = 0:Hence, it is clear that S0;n(x) = Pn(x)where Pn(x) is as de�ned in (3.4) of [6]. For p = 1; q = �1; r = 1 and j = 0;Sj;n(x) reduces to Walton and Hordam's generalized Fibonacci FunctionHn(x) as de�ned in (4.1) of [8]. If, in addition to the above particularvalues, a = 0 and b = 1, then Sj;n(x) reduces to Elmore's function En(x):Finally, if in addition, x = 0 then Sj;n9x) reduces to Fn:For typographical convenience, we write Sn(x) for Sj;n(x) in the follow-ing sections.Recurrence relation for Sn(x):Sn(x) satis�es the following recurrence relationSn(x) = pSn�1(x)� qSn�2(x): (3.4)Proof:RHS = p2d �l�n�1Nr;j(��x)�m�n�1Nr;j(��x)�= q2d �l�n�2Nr;j(��x)�m�n�2Nr;j(��x)�= 12d �l�n�2Nr;j(��x)[p�� q]�m�n�2Nr;j(��x)[p� � q]	 :As �; � are the distinct roots of x2 � px+ q = 0, we have p�� q = �2 andp� � q = �2; using which we easily get the result.Some preliminary results(A) Binets's Formula: Sn(x) is given bySn(x) = 1d [(S1(x)� �S0(x))�n + (�S0(x)� S1(x))�n] :(B) Generating Function S(t) and Sn(x) is given byS(t) = 1Xn=0Sn(x)tn = S0(x)� pS0(x)t+ S1(x)t1� pt+ qt2



20 Two Generalized Trigonometric Fibonacci Sequences(C) Exponential Generating Function E(t) for Sn(x) is given byE(t) = 1Xn=0 Sn(x)tnn! = 1d �(S1(x) � �S0(x))e�t � (S1(x) � �S0(x))e�t� :(D) limx!1 Sn+1(x)Sn(x) = 8<: � if ����� ��� < 1;� if ��� ����� < 1:(E) 1Xn=0Sn(x) = Sn+2(x)� S1(x)� (p� 1)[Sn+1(x)� S0(x)]p � q � 1All the above results are easily proved by using (3.4) and by noting that�; � are the roots of x2 � px+ q = 0:4 Various identities for Sn(x)Again, for the sake of convenience, we write:Tn(l; �;x) for l�nNr;j(��x)and Tn(m;�;x) form�nNr;j(��x):Note that with this notationSn(x) = Sj;n(x) = 12d [Tn(l; �;x)� Tn(m;�;x)] :The following identities correspond to identities (4.2) to (4.8) in [6].Sn�1(x)Sn+1(x) � S2n(x) = �Tn(l; �;x)Tn(l; �;x)4q ;Sn(x)E�n+1(x) � qSn�1(x)E�(x) =12d �e�xTn+r(l; �;x)� e�xTn+r(m;�;u)� ;where E�n(x) is Elmore's Function as de�ned in section 1.Sn(u)E�s+1(v)�qSn�1(u)E�s (v) = 12d �e�vTn+s(l; �;x)� e�xTn+s(m;�;x)� ;



S.P. Pethe and R.M. Fernandes 21S2n(x) � qS2n�1(x) = 14d ���1T 2n(l; �;x)� ��1T 2n(m;�;x)� ;S2n+1(x)� q2S2n�1(x) = p4d �T 2n(l; �;x)� T 2n(m;�;x)� ;Sn�k+1(x)Sn+k+1(x)� S2n+1(x) =� 14d2 [Tn�k+1(l; �;x)Tn�k+1(m;�;x)] (�k � �k)2;Sn(x)Sn+l+1(x)� Sn�kSn+k+l+1(x) =14d2qkTn(l; �;x)Tn(m;�;x)(�k � �k)(�k+l+1 � �k+l+1):All the above identities are proved in a way similar to that in [6]. The proofsare therefore omitted. Observe that for j = 0, all the above identities arereduced to corresponding identities in [6], and in turn to the correspondingones in [8] for p = 1; q = �1; r = 1 and j = 0: These, in turn, reduce tothe corresponding identities for the Fibonacci Sequence for the particularvalues indicated in Section (3.2).5 Associated generalized trigonometric Fibonacci sequenceThe Associated Fibonacci Sequence, denoted by fF �ng; is de�ned by thefollowing recurrence relation:F �n = �F �n�1 + F �n�2; n � 2;with the initial values F �0 = 0 and F �1 = �1:The �rst few terms of this sequence are0;�1; 1;�2; 3;�5;8;�13:It is easily proved by mathematical induction thatF �n = (�1)nFn:



22 Two Generalized Trigonometric Fibonacci SequencesNote that if the roots of x2 + x� 1 = 0 are �11 and �11 , then �11 = ��1 and�11 = ��1: Binet's formula for F �n is easily obtained as:F �n = (�1)nFn= (�1)n�n1�(�1)n�n1p5= �n1��n1p5 :Note that F �n = Wn(0;�1;�1;�1):One similarly de�nes the Associated Extended Fibonacci Sequence fWngby the relation W �n = (�1)nWn = l�l� �m�l�2d :Then, it is easily proved that W �n satis�es the recurrence relationW �n = �pW �n�1 � qW �n�2; n � 2with W �0 = a and W �1 = �b:In other words W �n = (a;�b;�p; q):We now de�ne the Associated Generalized Trigonometric Fibonacci Se-quence S�j;n(x): Let r � 1 be a �xed integer and j = 0; 1; : : : ; r � 1: Let,S�j;0 = 12d [lMr;j(��x)�mMr;j (��x)] (5.1)where �; � are distinct roots of x2 � px+ q = 0, �� = �1=r; �� = �1=r andl;m and d are as de�ned in (1.1). Now de�ne fS�j;n(x)g as follows:S�j;1(x) = S�(r)j;0 (x);S�j;2(x) = S�(2r)j;0 (x);and, in general, S�j;n(x) = S�(nr)j;0 (x); n � 1:Then, from (2.6) and (5.1), we getS�j;1(x) = 12d [�l�Mr;j(��x) +m�Mr;j (��x)] ;



S.P. Pethe and R.M. Fernandes 23S�j;2(x) = 12d ��l�2Mr;j(��x) +m�2Mr;j(��x)� ;and, in general,S�j;n(x) = (�1)n2d [�l�nMr;j(��x)�m�nMr;j(��x)] ; n � 1If p = 1; q = �1; j = 0 and r = 1, we have, from (5.2),S�0;n(x) = (�1)n2d �l�ne��x �m�ne��x�= (�1)nHn(�x);where Hn(x) is Walton and Horadam's Generalized Fibonacci Sequence asde�ned in (4.1) of [8].Now Observe from (2.2) thatMr;j(0) = ( 0; j 6= 0;1; j = 0:Hence, from (5.2), we getS�0;n(0) = (�1)n2d [l�n �m�n]= 12d �l�ln �m�ln �= W �n :Finally, if p = 1; q = �1; r = 1 and a = 0; b = 1; then we have l = m = 2and d = p5: Hence we get,S�0;n = (�1)n(�n��n)p5= F �n:6 Various results for S�j;n(x)We now list below various identities for S�j;n(x) which are parallel tothose in sections (3.3), (3.4). Proofs also go parallel to those for Sj;n(x) andhence are omitted. We write S�n(x) for S�j;n(x):(1) S�n(x) satis�es the following recurrence relation:S�n(x) = �pS�n�1 � qS�n�2:



24 Two Generalized Trigonometric Fibonacci SequencesIn what follows �l; �l are the roots of x2+px+q = 0. Obviously�l = �� and �l = ��.(2) Binet's Formula for S�n(x) is given byS�n(x) = 1d h(�lS�0(x) � S�1 (x))�ln + (S�1 (x)� �lS�0 (x))�li :(3) Generating Function S�(t) of S�n(x) is given byS�(t) = 1Xn=0S�n(x)tn = S�0 (x) + pS�0 (x)(t) + S�1 (x)(t)1 + pt+ qt2(4) Exponential Generating Function E�(t) for S�n(x) is given byE�(t) = 1Xn=0 S�n(x)tnn! = (�S�1 (x) + �lS�0 (x))e�lt + (S�1 (x) � �lS�0 (x))e�ltd :(5) limx!1 S�n+1(x)S�n(x) = 8<: � if ����� ��� < 1;� if ��� ����� < 1:(6) 1Xn=0S�n = (p+ 1) ��S�m+1(x) + S�0 (x)�+ S�1 (x)� S�m+2(x)p + q + 1In what follows, we write, for �xed integer r � 1; T �n (l; �;x) forl�nMr;j(��x) and T �n(m;�;x) for m�nMr;j (��x):(7) S�n�1(x)S�n+1(x)� S�2n (x) = � 14qT �n(l; �;x)T �n(m�;x):(8) S�n(x)E�n+1(x) + qS�n�1(x)E�n(x) =(�1)n2d �e�xT �n+s(l; �;x)� e�xT �n+s(m;�;x)� :



S.P. Pethe and R.M. Fernandes 25(9) S�n(u)E�s+1(v) + qS�n�1(u)E�s (v) =(�1)n2d �e�vT �n+s(l; �;u)� e�vT �n+s(m;�;u� :(10) S�2n (x)� qS�2n�1(x) = 14d ���1T �2n (1; �;x)� ��1T �n(m;�;x)� :(11) S�2n (x)� q2S�2n�1(x) = p4d �T �2n (l; �;x)� T �2n (m;�;x)� :(12) S�n�k+1(x)S�n+k+1(x) � S�2n+1(x) =14d2 �T �n�k+1(l; �;x)T �n�k+1(m;�;x)� (�k � �k)2:(13) S�n(x)S�n+l+1(x)� S�n�k(x)S�n+k+l+1(x) =(�1)l+14d2qk S�n(l; �;x)S�n(m;�;x)(�k � �k)(�l+k+1 � �l+k+1):All the above identities are reducible to those for W �n and then,in turn , for F �n: References[1] M. Elmore. Fibonacci functions. The Fibonacci Quarterly, 5(4):371{382, 1967.[2] A.F. Horadam. A generalized �bonacci sequence. The American math-ematical Monthly, 68(5):455{459, 1961.[3] A.F. Horadam. Basic properties of a certain generalized sequence ofnumbers. The Fibonacci Quarterly, 3(3):161{176, 1965.[4] A.F. Horadam. Special properties of the sequence Wn(a; b; p; q):l. TheFibonacci Quarterly, 5(5):424{434, 1967.



26 Two Generalized Trigonometric Fibonacci Sequences[5] J.G. Mikusinski. Sur les fonctionskn(x) = 1Xv=0 (�1)vxn+kv(n + kv)! (k = 1; 2; : : : ;n = 0; 1; : : : ; k � 1)n:. Annales de la Societe Polonaize de Mathematique, 21:46{51, 1948.[6] S.P. Pethe and C.N. Phadte. A generalization of the Fibonacci sequence.Applications of Fibonacci Numbers, 5:465{472, 1993.[7] S.P. Pethe and A. Sharma. Functions analogous to completely convexfunctions. Rocky Mountain Journal of Mathematics, 3(4):591{617, 1973.[8] J.E. Walton and A.F. Horadam. Some aspects of generalized Fibonaccinumbers. The Fibonacci Quarterly, 12(3):241{250, 1974.
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