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1 Introduction

Let M denote a (2n + 1)-dimensional contact metric manifold with con-
tact form 7, characteristic vector field &, the associated metric tensor ¢ and
the (1, 1)-tensor field ¢. We say M is K-contact if £ is Killing. Following
Blair [1] we denote the operators (1/2)L¢¢ and R(.,£)& by h and I respec-
tively; where £ denotes Lie-derivative operator. The tensors h and I are
known to be symmetric. We denote by 7 the tensor metrically equivalent
to the strain tensor Le¢g of M along &, i.e. g(7X,Y) = (Leg)(X,Y) for
arbitrary smooth vector fields X,Y on M.

It is known that a contact metric manifold is K-contact if and only if
h = 0. Recently the author [9] proved that a K-contact manifold cannot
admit a second order symmetric parallel (covariant constant) tensor other
than a constant multiple of the associated K-contact metric. This result
has been generalized by the author [10] on a contact metric manifold the &-
sectional curvature K (€, X) non-vanishing and independent of the choice of
X. On the other hand, a contact metric manifold satisfying R(X,Y)é =0,
is known (see Blair [2]) to be locally isometric to E"*! x S (4) and is
known (Blair and Patnaik [3]) to admit the second order symmetric parallel
tensor h — n ® £. Question, therefore arises where there are contact metric
manifolds for which one of the symmetric tensors i, I and 7 is parallel. We
answer it a little more generally by proving

Theorem 1.1 Let M be a contact metric manifold. Then

(i) if his a Codazzi (in particular, parallel) tensor then h =0, i.e. M is
K-contact.

(ii) if mis Codazzi (in particular, parallel) then 7 = 0, i.e. M is K-contact.

(iii) if I is parallel then I = 0, i.e. the sectional curvatures of all plane
sections containing & vanish.
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Remark 1.1 Part (iii) of the above theorem deserves special attention be-
cause 1 is the operator that measures the sectional curvatures of plane sec-
tions containing & and the theorem says that if I is parallel then 1 = 0 .
However the question of classifying locally symmetric (i.e. parallel Riemann
tensor) contact metric manifolds is still open, except in dimensions 3 and

5 (see [5, 6]).

Now if A is a Codazzi tensor on a Riemannian manifold with Riemannian
connection V, ie. (VxA)Y = (VyA)X then (div )X = X(Tr A). We
would like to examine the converse situation for A = h on a contact metric
manifold M. but Trh = 0 on M and hence we need to examine just the
condition div A = 0. We answer it in dimension 3 proving

Theorem 1.2 For a contact metric 3-manifold M the condition that divh =
0 s equivalent to the condition that & 1s a eigenvector of the Ricci operator

Q.

Remark 1.2 Note that the condition Q€ = a function multiple of &, 1s
equivalent on a contact metric manifold, to divt = a function multiple of
n. An example of a contact metric manifold satisfying this condition s
given [4] by R® with contact structure n = 1/2(cos >dx’ + sin #3dz?) and
the associated metric g;; = (1/4)8;;. Since n is invariant by the translations
in the coordinate directions by 2w, the torus T° is a compact manifold also
carrying this structure. For this contact metric structure, divny = —4n.

Remark 1.3 In view of the identities Ric (X,€) = 2n(X) + (div (h¢))(X)
and Vx& = —¢pX —ohX for a contact metric 3-manifold, it follows that the
condition that & is a eigenvector of the Ricct operator, is equivalent to the
condition that € be a eigenvector of the Laplacian A = giivivj. Contact
metric 3-manifolds with & as an eigenvector of A have been classified by H.
Chen [7] and are either Sasakian or locally isomelric to a Lie-group wilh
left-invariant metric. It is also important to note that the condition that
& 1s a eigenvector of Ricci operator, is invariant under the D-homothetic
deformation of the contact metric structure, defined as (see [11, {]):

, -1 - _
n=an, 5255, ¢p=0¢, g=ag+ala—-1)neny

for a positive constant . (ﬁ,f, (/;,g) 15 agatn a contact metric structure.

2 Preliminaries

A (2n+1)-dimensional C'***-manifold M is said to be a contact manifold
if it has a global 1-form n such that n A (dn)” # 0 everywhere on M.
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For a contact form 7 there exists a vector field £ such that () = 1 and
(dn)(é,X) = 0 for any vector field X. A Riemannian metric ¢ is said
to be an associated metric if there exists a (1,1) tensor field ¢ such that
(dn)(X,Y) = g(X,8Y),n(X) = g(&, X) and ¢? = =T +n®&. The manifold
M with the structure (n,&, ¢, g) is called a contact metric manifold. The
tensor field h = (1/2)L¢¢ is symmetric, traceless and satisfies h& = 0 and
h¢ = —¢h. If X is an eigenvalue of h with eigenvector £ then —A\ is also an
eigenvalue with eigenvector ¢ . For details we refer to [1]. On a contact
metric manifold,

Ve =0 (2.1)

Vxé = ¢X — ¢hX (= Vef = 0 and div £ = 0) (2.2)
(Leg)(X,Y) = 29(hoX,Y) (2.3)

R(§, X)E = 6R(E, 6X)E = 2(h* + ¢*)X (2.4)
(Veh)X = ¢{X — h*X + R(¢, X)¢} (2.5)

div ¢ = —2ny (2.6)

Formulas (2.2) and (2.4) occur in [2], (2.5) in [3] and (2.6) in [8]. From (2.4)
it follows that the sum of the sectional curvatures K (¢, X) and K (&, ¢X)
for a unit vector X orthogonal to ¢ is = 2(I — |hX|?). Thus, if K(£,X) >0
for any vector X orthogonal to £ then K (&, X) < 2. We also note that, if
K(¢,X) > 1 then K(£,X) = 1. A contact metric manifold is K-contact
(i.e. € is Killing) if and only if K (¢, X) = 1 for any X orthogonal to .

3 Proofs of the results

Proof of Theorem 1.1 Substituting & for Y in the hypothesis (Vxh)Y =
(Vy h)X and using (2.2) we find

h¢X + hohX = (Veh)X. (3.1)
Using h¢ = —¢h and (2.5) in the above equation gives
R(EX)E = 6°X — WX (32)

because n(R(£, X)¢) = 0. Use of (3.1) in (2.4) shows h? = 0. Therefore,
|h|? = Tr h? = 0 and hence h = 0, proving (i). To prove (ii), by hypothesis
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and (2.3) we have
(Vx(he)Y = (Vy(he))X

Substituting ¢ for ¥ and using (2.1), (2.2) and (2.5) gives

hé (¢ + h)X = (B* +¢%)X + ¢R(E, 6 X)¢
Applying ¢ to both sides and using h¢ = —he and hé = 0 we get

R(E,¢X)E = o(hX — X) + (¢ — DI*X (3.3)
Replacing X by ¢X gives

R(6,X)é = h(h+ h¢ — DX + ¢*X (3.4)

The use of (3.2) and (3.3) in (2.4) yields h2¢X = 0. Replacing X by ¢X
gives h? = 0. As h is symmetric, it follows that A = 0. This proves (ii). For
(iii) we first differentiate (2.4) along & (understanding that IX = R(X,£)¢)
and using the fact V¢¢ = 0, we obtain

V,h? =0 (3.5)
That is,
h(Veh)+ (Veh)h =0
Differentiating it covariantly along & gives
2(Veh)? + h(VeVeh) + (VeVeh)h = 0. (3.6)
Now differentiating (2.5) along & covariantly gives
VeVeh =0 (3.7)
Using (3.6) in (3.5) gives (V¢h)? = 0. Hence
Veh =10 (3.8)
Then using (3.7) in (2.5) yields
X —R*X+X—-1X)=0

Operating by ¢ gives
IX = —h*X + X — p(X)E. (3.9)

Next, differentiating (3.8) covariantly along V', using the hypothesis VI = 0
and then substituting & for X gives

R2QY — hP0Y — ¢Y + hoY =0 (3.10)
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At this stage, first replacing Y by ¢Y in (3.9) gives
— WY +RPY Y — (V) —hY = 0. (3.11)
Secondly, operating (3.10) by ¢ gives
— Y —RY Y —p(Y)E+RY =0 (3.12)
Adding (3.10) to (3.11) shows
h* +¢* =0 (3.13)

Consequently (3.8) and (3.12) imply I = 0, ending the proof.

Proof of Theorem 1.2 From (2.2) it follows for a (2n + 1)-dimensional
contact metric manifold M that

(Vxh)¢ = h(¢ — h¢)X (3.14)

Taking (e;) as a local orthonormal basis, putting X = e; in (3.13), taking
inner product with e; and summing over ¢ we find

(divh)E =0 (3.15)
as Tr (h¢) = Tr (h%¢) = 0. If h = 0 (i.e. M is K-contact) then (i) and (ii)
are obviously true. So let 2 # 0 in some neighborhood of M and now let
dim M = 3,1i.e. n = 1. We can choose a local ¢-basis (&, F, ¢ E) such that

hE = AFE and h¢F = —A¢FE. From (2.3) and the definition of 7, we have
7 = 2h¢. Hence

(div 7)Y = 2[(div h)$Y + M2g((VEe)Y, E) — (div ¢)Y}].
Using (2.6) gives
(div )Y = 2(div h)gY + 2A[n(Y) + 20((V o)V, E)). (3.16)
To prove (i) implies (ii), assume div h = 0. Then (3.15) gives
(div )Y = 2A[g((VE®)Y, E) + n(Y)].
Taking ¥ = E, we find
(div ) E = 4\g((Ve)E, E) = 0.

Thus (div7)X = 0 for any X orthogonal to &. Hence div r = fn for some
scalar field f. Conversely, to prove (ii) implies (i), assume divr = f5. Then
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(3.15) gives
(f = 20)n(Y) = 2(div h)¢Y +4rg(VEd)Y, E).
Replacing Y by ¢ E,
(div h)E = 20g((VEd)oE, E) = 2\[—g(VEE, E) + ¢(VEoE, ¢ E)] = 0,

since F and ¢ E are unit vector fields. As E 1s any unit eigenvector orthog-
onal to &, of h, we obtain (div h)X = 0 for any X orthogonal to £&. Taking
into account this and (3.14) we conclude divh = 0. This completes the
proof.

Acknowledgment: The author is grateful to Professor David E. Blair
for his going through the manuscript.

References

[1] D.E. Blair. Contact manifolds in Riemannian geomelry, Leclure notes
m Mathematics 509. Springer-Verlag, Berlin-Heidelberg, New York,
1976.

[2] D.E. Blair. Two remarks on contact metric structures. Tohoku Math

J., 29:319-324, 1977.

[3] D.E. Blair and J.N. Patnaik. Contact manifolds with characteristic vec-
tor field annihilated by the curvature. Bull. Inst. Math. Acad. Sinica,
9:533-545, 1981.

[4] D.E. Blair and R. Sharma. Generalization of myers’ theorem on a

contact manifold. lllinows J. Math., 34:837-844, 1990.

[5] D.E. Blair and R. Sharma. Three dimensional locally symmetric con-

tact metric manifold. Bolletino U.M.I., 7(4-A):385-390, 1990.

[6] D.E. Blair and J.M. Sierra. 5-dimensional locally symmetric contact
metric manifolds. preprint.

[7] H Chen. Contact metric 3-manifolds with characteristic vector as an
eigenvector of the laplacian. private communication.

[8] Z. Olszak. On contact metric manifolds. Téhoku Math J., 31:247-253,
1979.

[9] R. Sharma. Second order parallel tensors on contact manifolds. Alge-
bras, Groups and Geometries, 7:145-152, 1990.



Ramesh Sharma 33

[10] R. Sharma. Second order parallel tensors on contact manifoldsii. C.R.

Math. Rep. Acad. Sci. Canada, 13:259-264, 1991.

[11] S. Tanno. The topology of contact riemannian manifolds. Ilinois J.

Math, 12:700-717, 1968.

This electronic publication and its contents are ©copyright 1995
by Ulam Quarterly. Permission is hereby granted to give away
the journal and it contents, but no one may “own” it. Any and
all financial interest is hereby assigned to the acknowledged au-
thors of the individual texts. This notification must accompany
all distribution of Ulam Quarterly.



