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Abstract

We consider the number of ratios of three zygotic types in a population
of single characteristic diploid mating individuals of three zygotic types:
dominant, mixed, and recessive (d, m, and r). The rules of reproduction
are the usual ones in Mendelian inheritance: d+d — d, d+m — d and m
in equal ratios, d4+r — m, m+ m — all three in the 1:2:1 ratios, m+r —
m and r in equal ratios, and finally r4+r — r. One starts with a population of
size three at generation 0, one each of the three zygotic types. Each member
then mates once with each of the three zygotic types from outside the tree
of generations and produces three offspring in generation 1. This process is
continued, generation after generation. We obtain by use of a multiplication
table, ordered triplets that can be interpreted, when normalized, as the
probability that a given left- product of d’s, m’s, and r’s is of type d, m,
or r. The ordered triplets present in generation n are partitions of 2727,
Distinct triplets give distinct ratios. We calculate the number of triplets in
each generation. We show that the number of distinct triplets at the n-th
generation is 3-2™. This is much smaller, for large n, than 3-3", the number
of elements in each generation. The number of unordered triplets is 2”7 + 1.
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1. Introduction.

In this paper we consider the number of ratios of three zygotic types
in a population of single characteristic diploid mating individuals of three
zygotic types: dominant, mixed, and recessive (d, m, and r). The rules
of reproduction are the usual ones in Mendelian inheritance: d +d —
d, d+m — d and m in equal ratios, d +r — m, m + m — all three in
the 1:2:1 ratios, m +r — m and r in equal ratios, and finally » +r — 7.

Suppose one starts with a population of size three at generation 0, one
each of the three zygotic types. (One could define a special zygotic type to
be used only once. This element will become the multiplicative identity: e.
In that case, one could extend the tree backward to generation -1 and make
the tree a rooted tree by hypothesizing the element e at generation -1.) Each
member then mates once with each of the three zygotic types from outside
the tree of generations and produces three offspring in generation 1. Thus
there are nine members in generation 1: d?, dm, dr, md, m?, mr, rd, rm
and 2. This process is continued, generation after generation. As explained
in §2, we obtain by use of the multiplication table (1) below, ordered triplets
that can be interpreted, when normalized, as the probability that a given
left-product of d’s, m’s, and r’s is of type d, m, or r. The ordered triplets
that are present in generation n are partitions of 227. Therefore distinct
triplets give distinct ratios. Hence we use the terms triplets and ratios in-
terchangeably. We are interested in the number of possible ratios or triplets
present in each generation. We show in this paper that the number of dis-
tinct ratios at the n-th generation is 3 - 2”. This is much smaller, for large
n, than 3 - 3", the number of elements in each generation. If one counts
unordered ratios, then the number of distinct ratios is 2" + 1.

In discussing the meaning of these results, one needs to distinguish the
codominant (a distinct phenotype for each genotype) situation from the
noncodominant situation. Suppose we consider a codominant gene and that
we know the zygotic type of a given individual and the zygotic types of
its ancestors for n generations back. Then given the zygotic type of the
individual, one can calculate the probabilities of the three types without
reference to the ancestors. The ratios, for a given sequence of n ancestors,
tell us what the probability distribution is for the three types in the nth
generation. Thus the sets of triplets obtained tell us the distributions of
probabilities. If the gene is noncodominant, one can cannot determine the
sequence of ancestors and therefore which ratio applies. What the counting
of ratios does for us is to put limits on the amount of evolution possible in
this very restricted model.

One of the shortcomings of this model is that mating by objects of the
tree is always done with objects of known type coming from outside the tree.
This is similar to a patriarchal family tree in which only males are listed.
Nonfamilial females are imported and familial females are exported. This
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might partly account for the few number of ratios we find. It is hoped in the
future to carry out a project in which we make a more complete counting
of possible ancestral trees. Such a project would involve the counting of
non-associative combinations. See [3].

The proof in outline goes as follows. Representation of the evolution of
the population by a rooted trees shows there cannot be more than 3 - 37
ratios at the n-th generation. For ordered triplets, the number of ratios is
shown to be 3-27. For unordered triplets, the number is shown to be 27 +1.
The problem is formulated and solved by methods of genetic algebra.

2. Zygotic, Stochastic, and Baric Algebras.

The collection of nonassociative algebras arising in theoretic genetics are
called genetic algebras. For a through discussion of them, see Worz-Busekros
[6]. An introduction is given in Etherington [2]. Computational aspects of
them are discussed in the manual for the symbolic manipulation system AX-
IOM [5]. We consider a commutative, but nonassociative, zygotic algebra
M over the rationals with three basis elements: d, m, r. We define M by
the following multiplication table, giving second degree products as linear
combinations of the quantities d, m, r. Multiplication is assumed to be
commutative.

d? = 4d,
dm = 2d + 2m,
dr = 4m,

m? =d+2m+r,
mr = 2m + 2r,

r? = 4r.

Multiplication is assumed to take place from the left. We are interested in
the number of different ordered triplets (J, p, p) that arise in expansions
of arbitrary left-products of d, m, r, into quantities of the form

od + pm + pr, (2)

using the multiplication table (1). The coefficients in (2) are of course
nonnegative integers.

When the substitution



4 W.A. Beyer and L.M. Holm

is made, (1) becomes

24,

- 1- 1

Ir = m,

m2217+1m+1f (26)
4 2 4’

11

mr_§ —1—57“,

=7

where again multiplication is commutative. We call this algebra M. If one
sets a; = d, as = m, and az = 7, then (2b) can be written in the from

3
aia; =Y Yijkak, i,5=1,2,3, (2¢)
k=1
with
3
D ik =1, ik 20, (2d)
k=1

where ;5 are obtained from (2b). Condition (2d) insures that all products
of degree n can be represented in the form of a linear combination of the
basis vectors ay, as, as with coefficients that are nonnegative real numbers
with sum equal to 1. We write this left-product in the form

3
product = Z 'yl[ﬁlductykak,
k=1

where
. [n]
Zpyproduct,k =1
k=1
[n]

The quantity Vproduct k is the probability that mating of zygotes with a
zygote of known type that make up the n-fold left-product produce a zygote
of type k, where k is one of d, m, or r. Rather than calculating 'yl[ﬁlductyk
for all products of degree n, we find it more convenient to work with triplets
of integers.

M is a stochastic algebra with a genetic realization. The basis (d, m, )
is called a natural basis. For definitions, see page 12 of [6]. Tt turns out
that any stochastic algebra is baric and can have a norm defined so that 1t is
also a Banach algebra. Note that M does not have a multiplicative identity.
As is done in Hille and Phillips, page 118 of [4], it is possible to embed M
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in a larger algebra M that does have a multiplicative identity so that M is
isomorphic to a subalgebra of M.

3. Counting Triplets for Small n.

We have carried out the calculations of the types of triplets appearing in the
first four generations using the symbol manipulation program MACSYMA.
At the nth generation the types of unordered triplets present are determined
by first forming all the left-products that represent the ancestry of each
possible zygote present by the following left-product:

(d"3 (' (7 (S (' (7 (2 ) D) (3)
where the ¢’s are nonnegative integers whose sum is n. Thus the nonzero ¢’s
in (3) are compositions of n. See Andrews [1]. We reduce each quantity from
(3) into the form (2) using the multiplication table. To obtain the unordered
triplets present in the (n + 1)th generation, we successively multiple the
resulting linear forms on the left by d, m, and r to obtain second degree
left-products. The multiplication table is then used to reduce these sums of
second degree products to linear forms.

We then count the number of distinct unordered triplets, or equivalently
the distinct zygotic ratios. We arrange entries in the ordered triplets in
descending order to give unordered triplets and obtain the results given in
the tables below. The form {[a, b, ¢]; e} denotes the unordered triplet [a, b, ¢]
with multiplicity e, where multiplicity denotes the number of ordered triplets
corresponding to the given unordered triplet. Square brackets denote un-
ordered triplets, round brackets denote ordered triplets.

Table of Ordered Triplets

Generation # Ordered triplets 7t of ordered triplets
0 (0,0,1) (0,1,0) (1,0,0) 3=3.2°
1 (0,0,4) (0,4,0) (4,0,0) 6=3. 21

(0,2,2) (1,2,1) (2,2,0)
2 (0,0,16) (0,16,0) (16,0,0) 12=13.22
(0,4,12) (4,8,4) (12,4,0)
(0,8,8) (6,8,2) (8,8,0)
(0,12,4) (2,8,6) (4,12,0)
3 (0,0,64) (0,64,0) (64,0,0) 24 =3.23
(0,8,56) (28,32,4) (56,8,0)
(0,16,48) (24,32, 8) (48,16,0)
(0,24,40) (20,32,12) (40,24, 0)
(0,32,32) (16,32, 16) (32,32,0)
(0,40,24) (12,32,20) (24,40,0)
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(0,48, 16) (8,32, 24) (16, 48, 0)
(0,56,8) (4,32,28) (8, 56, 0)

Table of Unordered Triplets

Generation # Unordered triplets 7t of unordered triplets

0 {[1,0,0];3} 1

1 {[4,0,0];3} {[2,2,0]; 2} 3=21+41
{[2,1,1]; 1}

2 {[16,0,0];3} {[12,4,0];4} 5b=22+1
{[8,8,0];2}{[8,6,2]; 2}
{[8,4,4];2}

3 {[64,0,0];3} {[56,8,0];4} 9=23+1
{[48,16,0];4} {[40, 24, 0]; 4}
{[32,32,0]; 2} {[32, 28, 4]; 2}
{[32, 24, 8]; 2} {[32, 20, 12]; 2}
{[32, 16, 16]; 1}

The entries in these tables have also been calculated for n = 4 with results
consistent with the above entries.

4. Observations on the Tables of Triplets.

Four observations can be made about these tables. For values of n < 4, we
have:

1. For generation number n > 0, each unordered triplet is a partition into
one, two, or three parts of 227, For each generation there is a unordered
triplet of the form [2%7,0, 0].

This observation for general n is proved as follows. Make the induction
assumption that

On + i + pn = 27"
This relation holds for n = 1. By use of the multiplication table (1) it
can be checked easily that for the n + 1 generation the unordered triplet
(On+1, Pon+t1, Pny1) satisfies
Sng1 F fing1 4 pop1 =4 27"
The existence of the unordered triplet of the form (2270, 0) follows from

the existence of the zygote d” = 2%7d. Thus observation 1 holds for general
n.

— 22(n+1)
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2. An example of a triplet that, because of our special mating rules, does
not appear is (12,40,12) which arises from (dm)(mr) # d(m(m(r))).

3. For an unordered triplet of the form [a, 0, 0], the multiplicity is 3. For
an unordered triplet of the form [a,a,0], the multiplicity is 2. For an
unordered triplet of the form [a, b, 0], @ # b, the multiplicity is 4. For an
unordered triplet of the form [a, b, ¢], a, b, ¢ all different, the multiplicity
is 2. For an unordered triplet of the form [a, b, ], the multiplicity is 1.
We have not proved this observation for general n.

4. At generation number n > 0, there are only the two sets of unordered
triplets:

Sho[(2™ — k)2m, k2", 0], 0<k<2nt
S22t (2n —k)2n Tt k2n T, 1<k<ont

This observation is stated in Theorem 2 below for general n.

(4)

5. 3.2" Ordered Triplets are Present at the nth Generation.

We first examine the types of ordered triplets present. It appears that the
triplets present in the above table of ordered triplets are of four types at
the nth generation:

227 0,0), (0,227, 0), (0,0, 22").

(2" — k)27 k27 0), 1< k<27 — 1.

0,k27, (2" —k)2"), 1< k< 2" — 1.

k2n=1 221 (97 _ py2n-ly 1 < k<27 — 1.

Type 1,.

(
Type 2,. (
Type 3,. (0,

(

Type 4,.
To do the induction proof for Theorem 1, we repeat the above list of
types for the n + 1st generation:
Type Ln41. (222110,0), (0,220+1 0), (0,0, 22(*+1).
Type Znp1. ((27F! — k)27+1 k2n+1 ()
Type 3p41. (0, k27HL (2n+L — f)ontl)
(k2n, 22041 (2n+1 _ f)2n), |

1<k<ortl 1.

bl

1< k<2t — 1.

bl

Type 4541. <k <ontl 1.

THEOREM 1. The branching process defined by (7) below with the set of
ordered triplets at the 0-th generation given as

[1,0,0], [0,1,0]; [0,0,1] (5)
is the set of ordered triplets at the n-th generation given by
(177,’ 271, 377,’477,) (6)
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These ordered triplets yield distinct ratios. Their cardinality is 3 - 2”.

Proor. To show the relations between the two generations, 1t 1s useful to
spell out the relations between ordered triplets at generation n: (0p, hn, pn)
and the ordered triplets at generation n + 1@ (dp41, pn+t1, Pnt1). These
relations are given by:

d(dpnd 4+ pnm + ppr) = 2(28, + pn)d + 2(ptn + 2pn)m
m(0nd + pnm + par) = (20, + pn)d + 2(0n + pn + pr)m + (ptn + 2p0)7
7(0nd + pam 4 pur) = 2(20, + pin)m + 2(ptn + 2pn )7

We note that these relations are invariant under interchange of d and r. The
relations can also be written in the form

M(0n, s Pr) = (200 + fin, 2(0n + pin + pn), fn + 2pn) (7)
7(0n s pns pr) = (0,2(20, + ), 2(pn + 2pn))

In (7), d,m,r can be regarded as operators that take an ordered triplet
in the nth generation into an ordered triplet in the n + 1th generation.
We shall now apply the operators d, m, r to each of the ordered triplets of
types 1n, 25, 3, and 4,. We obtain the following results. The type of the
generated ordered triplet in the n 4+ 1 generation is given to the right.

For Type 1, triplets we have:

d(2%7,0,0) = (22(*+1) 0,0) Lng1 (8a)
d(0,2%",0) = (22" +1 22"+1 ,0) 241 (8b)
d(0,0,2%%) = (0,2%"+1) ) Lng1 (8¢)
m(2*",0,0) = (2" 22"+1 ,0) 241 (8d)
m(0,2%",0) = (2%", 22"+1 , 2% 4ps1 (8e)
m(0,0,2%") = (0, 27"+ 22+l 3n41 (81)
r(2%7,0,0) = (0,221, 0) (A (8)
r( 22n 0) ( 22n+1 22n+1) 3n-|—1 (Sh)
r(0,0,2%) = (0,0, 23 +1) Log1 (8k)

It is seen that the set of right-hand sides include the set Type 1,41.

For Type 2, triplets we have:

d((2" — k)2, k27, 0) =((2" Tt — k)27 k27T 0), 2,44 (9a)
a

1<k<2®—1,
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m((2" — k)27, k27, 0) = (k27,2271 (2" — k12", 4,44
="t —k 1<k<2"—1, 2"41<k <2"tt_1,
(90)

r((2" — k)27 k2",0) = (0, /2" (2"t — pH2nthy 3,4
="t —k 1<k<2"—1,2"4+1<k <2tl_1.

(9¢)
For Type 3, triplets we have
d(0, k27, (2" — k)2™) = (2" — k)27t K27 0), 2,4 0d)
="tk 1<k<2"—1,2"4+1<k <2tl_1,
m(0, k27, (2" — k)2") =(k27, 27" (2" — £)2"), 4,4 (9)
1<k<2"—1, ‘
r(0, k27, (2" — k)2") =(0, k2"t (2" — k)2nthy) 3,4, 97)

1<k<2"—1.

For Type 4, triplets we have

d(an—l’QZn—l’ (2n _ ]{7)2”_1) — ((2n+1 _ k/)2n+1’k/2n+1’0)’ 2n+1,
F=32""1—k 1<k<2"—1, 2" 41<k <3.277 11,
(99)

m(an—l’QZn—l’ (2n _ ]{7)2”_1)) — (k/Qn’22n+1’ (2n+1 _ ]{7/)2”), 4n+1
=321k 1<k<2"—1, 2" 41<k <3.2771—1,
(9h)

7“(]472”_1, 22n—1’ (2n _ ]{7)2”_1)) — (0’ k/2n+1’ (2n+1 _ k/)2n+1)’ 3n+1
F=2""tgk 1<k<2"—1;2""141<k <3.2071—1.
(9%)

We see that (9a), (9d), and (9g) give exactly all of the type 2,41 set.
We see that (9b), (9¢), and (9h) give exactly all of the type 3,41 set. We
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see that (9¢), (9f), and (9k) give exactly all of the type 4,,41 set. Thus the
set (In+1, 2041, 3n+41,4n+1) is the n+ 1 generation, provided the induction
hypothesis holds for n = 0. It can be checked that the hypothesis does hold
for n = 0. This completes the proof of the theorem.

It can be checked that the set in (6), when arranged as unordered triplets
is exactly the sets S} and S2 in (4) of which there are 2" +1 members. Thus
we have the following theorem:

THEOREM 2. The set of unordered triplets arising from the branching
process described in Theorem 1 have 2”7 +1 members at the n-th generation.

6. Discussion

The manipulations in the induction proof of Theorem 1 prove the intuitively
obvious conclusion that iteratively filling three ordered slots with choices
between two genes, n times, leads to 3 - 2" ordered combinations. Theorem
2 gives the size of the set of unordered triplets at the nth generation.
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