
Ulam Quaterly { Volume 3, Number 2, 1996All Bundles in W 32;8 HaveIn�nitely Many Maximal SubbundlesI. GrzegorczykDepartment of MathematicsUniversity of MassachusettsDartmouth, MA 027471. IntroductionLet X be a complete non-singular irreducible curve over an algebraicalyclosed �eld of characteristic zero. For a vector bundle E of rank two overX de�ne s(E) = deg(E) � 2 max deg(L);where the maximum is taken over all line subbundles L of E. A line bundleL of E of maximal degree will be called a maximal line subbundle. LetM (E) be the sub-scheme of Pic(X) formed by the maximal line subbundlesof E. Maruyama [M] proved the following results:1. If s(E) =g, then dim M (E) = 12. For a general bundle E with s(E) � g� 1 there are only �nitely manymaximal subbundles.Maruyama conjectured, that if E is not of the form L � L and s(E) �g � 1, the number of maximal subbundles is �nite. Lange and Narasimhan[LN] showed that the conjecture is not generally true. For s(E) = 2 andg � 3 they determined completely the curves and bundles E for whichM (E) is not �nite. For s(E) = 3 and g � 4 they showed that there is acurve X of genus g and a vector bundle E on X with dim M (E) = 1. Theyalso construct examples with dim M (E) = 1 for arbitrary g large enoughcompared with s(E). 41



42 All Bundles in W 32;8 Have In�nitely Many Maximal Subbundles2. DiscussionLet W rn;d = fE : h0(E) � r + 1g be a sub-variety of moduli space of stablevector bundles on X of degree d rank n consisting of bundles E such thath0(E) � r + 1.Theorem: Let X be a general curve of genus 5. Then all bundles inW 32;8 = fE : h0(E) � 4g;have in�nitely many maximal subbundles.Proof: In [T, Theorem 1] Teixidor showed that for a general curve ofdegree 5 W 32;8, is not empty. Let E be in W 32;8. By stability of E for anysubbundle L we have deg L < 4. Assume that E has a subbundle of degree3, denoted as L3. Then we could write E as an extension0! L3 ! E ! L5 ! 0;where L5 is a quotient bundle of degree 5.De�ne � = g � (r + 1)(g � d + r), where g is a genus of a curve X, dand r are integers such that d > 0; r � 0. By Dimension Theorem for linebundles [ACGH, pg 214 ] for � < 0 there is no bundles having h0(L) � r+1.Therefore h0(L3) � 1 and h0(L5) � 2: But then h0(E) � 3 which contradictsthe assumption that E has h0(E) � 4:This implies that degree of a maximal subbundle ofE must be less then 3.Since h0(E) � 4 and deg E = 8 there is an in�nite family of line subbundlesof degree 2 of E. Therefore E has in�nitely many maximal subbundles.Remark 1. Note that in this case d � g � 1mod2 hence by Corollary3.2(Maruyama) in [LN] there is an open dense set V of moduli space suchthat every E 2 V admits only a �nite number of maximal subbundles. SinceW 32;8 contains only bundles with an in�nite number of maximal subbundlesthe complement of V is not empty.Remark 2. Since in our case s(E) = 4; W 32;8 gives new examples of bundleswith an in�nite number of maximal subbundles.References[1] E. Abarello, M. Cornalba, P.A. Gri�ths, J. Harris, Geometry ofAlgebraic Curves, Volume I, Springer-Verlag, (1985).
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