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1. Introduction

Let X be a complete non-singular irreducible curve over an algebraicaly
closed field of characteristic zero. For a vector bundle E of rank two over
X define

s(E) = deg(E) — 2 max deg(L),

where the maximum is taken over all line subbundles L of E. A line bundle
L of E of maximal degree will be called a maximal line subbundle. Let
M (FE) be the sub-scheme of Pic(X) formed by the maximal line subbundles
of E. Maruyama [M] proved the following results:

1. If s(F) =g, then dim M (F) =1

2. For a general bundle ¥ with s(E) < g — 1 there are only finitely many
maximal subbundles.

Maruyama conjectured, that if E is not of the form L & L and s(F) <
g — 1, the number of maximal subbundles is finite. Lange and Narasimhan
[LN] showed that the conjecture is not generally true. For s(F) = 2 and
g > 3 they determined completely the curves and bundles E for which
M (FE) is not finite. For s(F) = 3 and g > 4 they showed that there is a
curve X of genus g and a vector bundle F on X with dim M(FE) = 1. They
also construct examples with dim M (F) = 1 for arbitrary g large enough
compared with s(F).
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2. Discussion

Let W7 ;= {E: RY(E) > r+ 1} be a sub-variety of moduli space of stable
vector bundles on X of degree d rank n consisting of bundles E such that

hO(E) > r+1.

Theorem: Let X be a general curve of genus 5. Then all bundles in

W23,8 ={E: h°(E) >4},
have infinitely many mazximal subbundles.

Proof: In [T, Theorem 1] Teixidor showed that for a general curve of
degree 5 W3 s, 1s not empty. Let E be in w3 's- By stability of £ for any
subbundle L we have deg L < 4. Assume that E has a subbundle of degree
3, denoted as L3. Then we could write E as an extension

0135 FE—L°—0,

where L is a quotient bundle of degree 5.

Define p = g — (r + 1)(¢ — d + r), where g is a genus of a curve X, d
and r are integers such that d > 0,7 > 0. By Dimension Theorem for line
bundles [ACGH, pg 214 ] for p < 0 there is no bundles having h°(L) > r+1.
Therefore hY(L3) < 1 and h°(L5) < 2. But then h?(E) < 3 which contradicts
the assumption that E has hY(FE) > 4.

This implies that degree of a maximal subbundle of £ must be less then 3.
Since h?(E) > 4 and deg E = 8 there is an infinite family of line subbundles
of degree 2 of E. Therefore E has infinitely many maximal subbundles.

Remark 1. Note that in this case d = ¢ — 1mod2 hence by Corollary
3.2(Maruyama) in [LN] there is an open dense set V' of moduli space such
that every E € V admits only a finite number of maximal subbundles. Since
W;S contains only bundles with an infinite number of maximal subbundles
the complement of V' is not empty.

Remark 2. Since in our case s(F) = 4, W;S gives new examples of bundles
with an infinite number of maximal subbundles.
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